
1 July 2000 Delphi Informant Magazine

July 2000, Volume 6 Number 7

Cover Art By: Arthur Dugoni

ON THE COVER
6 On the ’Net
Real-world Web Apps — Dr Mark Brittingham
You know the basics; Dr Brittingham tells us what it takes to build a
Web application to withstand the rigors of daily use, from WebBroker
components, to ISAPI DLLs, to tracking state, and more.

FEATURES
14 Columns & Rows
Exploiting SQL Server 7 DMO: Part II — Jason Perry
Mr Perry ends his two-part series on Microsoft SQL Server 7 Distributed
Management Objects by sharing an invaluable Database Information
and Reconciliation Tool, as well as a simple security object.

20 Greater Delphi
Palm Conduits: Part II — Ron Loewy
Completing his two-part series, Mr Loewy builds a conduit that moves
information from the Palm device to a Paradox database, and a conduit
that synchronizes the Paradox database and Palm device.

24 DBNavigator
Delphi and ASP — Cary Jensen, Ph.D.
Microsoft Active Server Pages are extremely popular. Dr Jensen shows
you how to get in on the action by explaining the basics of ASP, and
demonstrating how to create and use ASP objects with Delphi.

REVIEWS
30 Wise for Windows Installer 2.0
 Product Review by Bill Todd

35 Delphi 5 Developer’s Guide
 Book Review by Alan C. Moore, Ph.D.

DEPARTMENTS
2 Delphi Tools
5 Newsline
36 Best Practices by Clay Shannon
38 File | New by Alan C. Moore, Ph.D.

2 July 2000 Delphi Informant Magazine

Delphi

T O O L S

New Products
and Solutions
Joseph D. Booth Consulting Releases JBC UI/Scan for Delphi

 Joseph D. Booth

Consulting, Inc. released
JBC UI/Scan for Delphi,
a lint checker that allows
developers to provide a
more professional look
and feel to all their appli-
cation’s GUI design.
 The developer simply
scans an application, and
UI/Scan will report tab
order problems, menus
without code attached,
hard-coded colors, fonts
that are too small or too
large, hard-to-read color
combinations, and other
user interface concerns.
 UI/Scan will assist the devel-
oper in putting in the final
touches to the visual design
of an application. In addition,
UI/Scan allows the developer to
customize all aspects of a scan.
t
d
c
o
t

o
t
w
p
o
p
w
t

w
i
p
a
b
a
d

 O&A Productions released
Developers can customize colors,
fonts, lists of obsolete controls,
etc. There are also filters so
UI/Scan can be set to only focus
on fixing one problem at a time.
 Another feature is the reporting
option, which allows the devel-
 revisions. You can set up a
oper to print a report or save it
to a file.

Joseph D. Booth Consulting, Inc.
Price: US$149
Fax: (610) 409-8859
Web Site: http://jbooth-consulting.com
used to compare files to earlier
 Quma Software, Inc. announced file
Quma Releases QVCS 3.4
he release of QVCS 3.4, a Win-
ows 95/98/NT4/2000 version-
ontrol system designed to bring
rder and control to the applica-
ion development process.
 QVCS automates the tracking
f files as they change during
he development of a new soft-
are application. By requiring
rogrammers to log files in and
ut, QVCS prevents multiple
rogrammers from unknowingly
orking on the same file simul-

aneously.
 QVCS makes it easy to control
hich file revisions are included

n which releases, and to recover
revious versions of files. QVCS
llows you to control executa-
les, documentation, Web pages,
nd all files associated with a
evelopment project.

 QVCS stores and retrieves
global journal file to keep track
of all changes to files in all
your projects. You can insert key-
words into source code or binary
files for automated documenta-
tion and audit trail generation.
 At the programmer level, QVCS
keeps track of which changes are
made to which files, and when.
When a programmer checks out
a file, QVCS will retrieve the
latest version of the file, and
record a date/time stamp for that
programmer. QVCS ensures that
the programmer is authorized to
work on the module. It will warn
the programmer if a writeable
copy of the file already exists, and
deny access to the file if another
programmer is already working
on that file.
 When questions arise about
program versions, QVCS can be
revisions, or compare revisions
to other revisions. In an emer-
gency, you can restore a project
to an earlier-labeled release.
 In addition to using the Win-
dows program, QVCS allows
programmers to use batch files to
check files in and out, by provid-
ing 14 command-line utilities.
 QVCS provides a range of
reports, including reports of all
locked revisions (by individual or
team), revisions created after a
release, revisions created between
any two dates, revisions with com-
ment lines containing any given
text string, or any combination of
these criteria.

Quma Software, Inc.
Price: US$25; QVCS-Pro, US$40.
E-Mail: info@qumasoft.com
Web Site: http://www.qumasoft.com
O&A Productions Announces oaAgent 1.0
oaAgent 1.0, a pair of native
VCL components that make
working with the Microsoft
Agent COM server easer.
oaAgent brings Microsoft Agent
technology to the Delphi and
C++Builder IDEs in the form
of a non-ActiveX, native VCL
wrapper of the Microsoft Agent
COM server.
 The first component,
ToaAgent, wraps the Microsoft
Agent server COM. Addition-
ally, ToaAgent features enhance-
ments not found in the ActiveX
control, including persistent
voice commands and custom
context menus.
 The second component,
ToaAgentScript, is an extensible
scripting language and interpreter
component. ToaAgentScript man-
ages the interaction of multiple
agents and other program ele-
ments. Developers can also extend
the scripting language to add their
own commands.

O&A Productions
Price: US$35
Phone: (858) 618-1904
Web Site: http://www.o2a.com/agent.htm

http://jbooth-consulting.com
www.qumasoft.com
http://www.o2a.com/agent.htm

3 July 2000 Delphi Informant Magazine

Delphi

T O O L S

New Products
and Solutions
 Objective Software Tech- properties and events, into a developer

Objective Software Technology Announces TRANSFORM 5.0.1
nology Pty Ltd. announced
TRANSFORM 5.0.1, the newest
version of the company’s Delphi
IDE expert that lets you convert
entire forms, including form
single component that can be
reused inside other forms.
 TRANSFORM creates reusable
groups of components or “aggre-
gate components,” which allow
s to encapsulate the
function of a related set of com-
ponents and selectively publish
properties, methods, and events
relating to the group.
 The aggregate component can
be installed in Delphi’s Compo-
nent palette and reused without
having to recreate each individ-
ual component.
 Aggregate components can be
used as business components to
encapsulate business logic and user
interface controls; to create com-
plex user interface controls, such
as toolbars and editors; and as
a tool for increasing productivity
and object reuse on larger projects.

Objective Software Technology
Pty Ltd.
Price: US$125
Phone: +61 8 8357 1805
Web Site: http://www.obsof.com
ompares updated and
 InstallShield Software Corp. made since the last release in pending) c

InstallShield Announces RTPatch for InstallShield Professional
announced the availability of
RTPatch for InstallShield Pro-
fessional. Developed by Pocket
Soft, Inc., and sold through
InstallShield and its worldwide
network of authorized resellers,
RTPatch for InstallShield Pro-
fessional provides byte-level soft-
ware patching capabilities spe-
cifically for InstallShield Profes-
sional 6.x and 5.x setups. End
users can now download update
“patches” instead of reinstalling
the entire program.
 RTPatch for InstallShield Pro-
fessional allows software devel-
opers to upgrade a file or a set of
files by sending only the changes
the form of a simple “patch,”
which can be easily distributed
via an InstallShield Professional
setup package. RTPatch typically
reduces the actual size of the
software update by over 90 per-
cent and provides developers
currently using InstallShield Pro-
fessional with a bandwidth-sen-
sitive solution that enhances the
delivery of software updates over
the Internet and other mediums.
 The GUI-driven Patch Build
Wizard walks developers
through a simple, four-step pro-
cess to create a patch. Behind the
Wizard, RTPatch’s “byte-level
differencing” technology (patent
original software versions to
include only the necessary data
in the patch.
 Once the patch file is created,
the developer includes the
patch in an InstallShield Profes-
sional installation package and
distributes it to end users for
installation via the Internet or
intranet. The end user simply
runs the new installation pack-
age and the patch is automati-
cally applied.

InstallShield Software Corp.
Price: US$495
Phone: (800) 374-4353
Web Site: http://www.installshield.com
 DeVries Data Systems, Inc. C++Builder is easier and more print meth

DeVries Data Systems Announces Release of OfficePartner 1.5
announced the release of
OfficePartner 1.5, the latest
version of its suite of software
components designed to inte-
grate the Microsoft Office suite
with Borland software develop-
ment tools.
 OfficePartner’s expanded
functionality will enable devel-
opers to produce results with-
out a great deal of Automation
expertise. With new function-
ality added to all main com-
ponents, automating Office
applications from Delphi and
stable.
 New features include
expanded and enhanced docu-
mentation to provide how-to
and reference information;
mail merge capability in Word
components that supports VCL
Datasets and ODBC; an
expanded connection frame-
work that allows OfficePartner
components to attach to run-
ning instances of Office appli-
cations and OLE containers;
find-and-replace functionality
included in Word components;
ods for Word docu-
ments and Excel workbooks; a
new element for accessing sub-
folders in Outlook 98/2000;
and the ability to run in hun-
dreds of development tools/-
platform scenarios, including
the latest versions of Delphi
and C++Builder.

DeVries Data Systems, Inc.
Price: US$399 per user; discounts available
for multi-license packages.
Phone: (888) 866-8031
Web Site: http://www.dvdata.com/dvnew/
pages/index.asp

http://www.obsof.com
http://www.installshield.com
http://www.dvdata.com/dvnew/

4 July 2000 Delphi Informant Magazine

Delphi

T O O L S

New Products
and Solutions
Lingscape Announces MultLang Suite 3

 Lingscape Ltd. announced
MultLang Suite 3, a new version
of the company’s globalization
tool for Delphi and C++Builder.
MultLang Suite targets general,
intermediate, and advanced
developers involved with inter-
national projects with full qual-
ity control.
 MultLang Suite 3 helps reduce
internationalization and localiza-
tion costs using wizards and
machine translation. It is based
on the Unicode standard, and,
together with a conversion
engine, provides target support
for languages such as Japanese,
Chinese, Arabic, Hebrew, Hun-
garian, Russian, and all Euro-
pean languages.
 The integration with the
IDE and the compiler helps
produce thin localized EXE,
DLL, and ActiveX, or option-
ally link multi-language sup-
port into the same application.
With MultLang, it’s possible
to compile Far East, Middle
East, and European languages
together on the same platform.
 Unique features include one
code base for all languages,
machine translation, quality assur-
ance guidelines, form validation
routines to detect form defects,
leverage feature for previous work,
migration utility to dynamically
 to surf the Net without
retrieve localized editions, team
development, context-sensitive
dictionaries, and more.

Lingscape Ltd.
Price: US$998; printed manual/CD/-
postage, US$39.
E-Mail: info@lingscape.com
Web Site: http://www.lingscape.com
file transfers.
 EliteSys announced the release fore able

EliteSys Announces SuperBot 2.2
of SuperBot 2.2, an automated
download utility for Windows
95/98/NT4 that can copy entire
Internet sites with one click.
Thanks to SuperBot’s HTML
rewriting technology, copied sites
look and act just like their online
counterparts.
 Once SuperBot has downloaded
a Web site, it can be viewed in
any Web browser, at high speed,
and without an Internet con-
nection. Modem users are there-
missing calls. A copied site can be
transferred directly to any other
storage medium for archival or
distribution purposes.
 SuperBot can be configured
to filter downloads by location,
date, file type, link type, depth,
and file count. Once a copy
operation has begun, it can be
paused, stopped, and restarted.
SuperBot utilizes HTTP/1.1
“Smart Restart” technology to
resume any partially completed
 With the “Monitor clipboard”
feature, you can download a Web
site by merely copying its address
and pressing J. SuperBot can
automatically launch a copied site
in your browser, as well as record
its location in a log file.

EliteSys
Price: US$24.95
E-Mail: elitesys@iname.com
Web Site: http://web.idirect.com/
~elitesys/superbot

http://www.lingscape.com
http://web.idirect.com/~elitesys/superbot

5 July 2000 Delphi Informant Magazine

News

L I N E

July 2000
 Colorado Springs, CO — Turbo- turbopower.com/tpslive.

TurboPower Announces Support for C++Builder 5
Power Software Co., developer
of tools and libraries for profes-
sional Delphi and C++Builder
programmers, announced full
and free support for Inprise Bor-
land C++Builder 5. Compatibil-
ity updates will be available for
all current version TurboPower
products. The free updates will
be available as no-charge down-
loads from the company’s Free
Update Center at http://www.
turbopower.com/updates/.
Updates will also be available on
CD-ROM for a nominal charge.
 In addition, customers can
subscribe to free TurboPower
electronic newsletters to receive
instant e-mail notification when
patches for the products they
use are available for download.
The address for e-newsletter
subscriptions is http://www.
 To learn more, visit http://

www.turbopower.com, or call
(800) 333-4160.
 Scotts Valley, CA — Inprise/- tool for the Linux platform. The

Inprise/Borland’s Kylix Project Builds Third-party
Network for Linux
Borland hosted more than 200
third-party authors, consultants,
trainers, and tool and compo-
nent vendors for the first in
a series of worldwide events
designed to prepare third-party
products and services for Kylix.
 Also participating were Linux
distributors, including Mandrake-
Soft, TurboLinux, Corel, Caldera,
and SuSE. Announced in Septem-
ber 1999, Project Kylix will be a
Linux rapid application develop-
ment environment that will sup-
port Delphi, C, and C++.
 The Kylix project is planned
to be the first high-performance
rapid application development
Kylix project is a component-
based development environment
for two-way visual development
of graphical user interface, Inter-
net, database, and server appli-
cations. Kylix will be powered
by a new native Delphi/C/C++
compiler for Linux and will
implement a native Linux ver-
sion of the Borland VCL (Visual
Component Library) architec-
ture. The Borland VCL for
Linux is designed to radically
speed native Linux application
development and simplify the
porting of Delphi and
C++Builder applications
between Windows and Linux.
Inprise/Borland Opens Public Field Test of InterBase 6.0

 Scotts Valley, CA — Inprise/-
Borland announced a public
field test of InterBase 6.0, its
cross-platform relational data-
base, for the Linux, Windows,
and Solaris operating systems.
A beta version of the database
— which will be open-sourced
with multiple platform support
in mid-2000 — is now
available as a free download
from the InterBase Web site
at http://www.interbase.com/
open/downloads/.
 Inprise/Borland invites inter-
ested parties to freely download
and test this latest version of
InterBase for Linux, Windows,
and Solaris. Any feedback on
this new version can be sent to
ib_support@inprise.com. Alter-
natively, users are encouraged to
participate in the field test news-
groups at http://www.interbase.
com/open/community/
60beta_newsgroups.html.
 Field test versions of InterBase
6.0 for Windows, Solaris, and
other operating systems will be
made publicly available in the
near future.
 To learn more, visit
Inprise/Borland at http://
www.borland.com, the
community site at http://
community.borland.com, or call
the company at (800) 632-2864.
Inprise/Borland Java Development Tools Win
Multiple Awards

 Scotts Valley, CA — Inprise/-
Borland announced that two of
its popular Java development
tools, JBuilder and JBuilder JIT,
have won multiple awards over
the past weeks. JBuilder, a rapid
application development (RAD)
environment for Java develop-
ment, won both the Software
Development Magazine Jolt Prod-
uct Excellence Award in the
Language and Development
Environments category, and the
1999 JavaWorld Readers’ Choice
Award for best IDE (integrated
development environment). The
JBuilder JIT, Borland’s Just-In-
Time compiler, won the Java-
World Readers’ Choice Award for
best compiler.
nd’s Visi-
 Scotts Valley, CA — Inprise/- code for functional innovation, to license Inprise/Borla

Inprise/Borland and Hitachi Strengthen Co-development Relationship
Borland Corp. and Hitachi, Ltd.
announced they have signed a
worldwide amendment to an
existing licensing agreement for
CORBA and Java development
technology.
 Under the terms of the new
agreement, the research and
development laboratories of the
two organizations will begin to
share their own innovations to
Inprise/Borland’s VisiBroker
product line, including source
technical enhancement, and qual-
ity improvement.
 Amendments to the current
agreement extends the relation-
ship between the two companies,
reaching back to 1995, for co-
developing CORBA-based prod-
ucts and will broaden the com-
mitment of the two organizations
to share enterprise middleware
technical innovations.
 As provided in a previous
agreement, Hitachi will continue
Broker and Inprise’s Java devel-
opment technology for inclusion
in Hitachi’s CORBA technology
products, such as TPBroker, Hita-
chi’s CORBA object transaction
service product, and the Cos-
minexus Application Server. (Cos-
minexus Application Server is cur-
rently marketed only in Japan.)
 Financial terms of the agree-
ment were not disclosed. For
more information on Hitachi,
visit http://www.hitachi.co.jp.

http://www.turbopower.com/updates/
http://www.turbopower.com/updates/
http://www.turbopower.com/tpslive
http://www.turbopower.com/tpslive
http://www.turbopower.com
http://www.turbopower.com
http://www.interbase.com/open/downloads/
http://www.interbase.com/open/community/60beta_newsgroups.html
http://www.borland.com
http://www.borland.com
http://community.borland.com
http://community.borland.com
http://www.hitachi.co.jp.

6 July 2000 Delphi Informant Magazine

On the ’Net
WebBroker / HTML / Web Servers / Delphi 5

By Dr Mark Brittingham

Figure 1: Delphi’s IS

W
(

ISAP
(

Web
Application

Object

W

Page Request

WebB

W

P

O

Real-world Web Apps
Building Session-aware ISAPI DLLs
If you’ve been working in Delphi for a while, you know it’s the most productive Windows
development tool available. What you may not realize is that it’s also an excellent tool

for developing Web applications. In this article, we’ll cover how to build a session-aware
ISAPI DLL that can be used in a real-world application.
API architecture.

eb Server
IIS, Omni)

I Requests & Responses
each in its own thread)

ebModule Pool

s Page Responses

WebModule
N

roker ISAPI DLL

TWebRequest
&

TWebResponse

Matching
ebActionItem

Linked
ageProducer

ther Actions
If the rise of Internet technologies has you worried that you’ll have
to leave the world’s best development environment behind, fear no
more. Delphi’s WebBroker technologies give you an easy way to build
fast, scalable Web applications.

Web applications are defined by a client-server model, where the
client is a Web browser that interacts with the Web server by sending
page requests and form results and receiving HTML in response. In
a very important sense, your job as a Web developer is to “program”
the user’s browser to behave the way you want it to by sending it the
appropriate HTML and JavaScript code.

Getting Started
Before starting, make sure your environment has all of the tools
needed for building your site. You’ll need a Web server, a Web
browser, an HTML editor, and either Delphi Enterprise or Delphi
Professional with the WebBroker libraries (also available at extra
charge from Inprise). We assume that you’ll be developing an ISAPI
DLL because of the very significant boost in performance these Web
applications provide. Not only do they avoid the overhead of loading
a CGI executable for every page request, they permit you to create
an extremely fast state management system in memory, rather than
relying on database access to maintain state.

For a Web server, you may choose to use Microsoft’s Personal Web
Server (PWS) or Internet Information Server (IIS) because these
come free with Windows 98, NT, and 2000. However, I recommend
that you download and install the OmniHTTPd server from Omni-
cron. It’s available at their Web site: http://www.omnicron.ab.ca/
httpd. Omni is far easier to use as a debugging host in Delphi than
the Microsoft Web servers, and is free for local and development use.
When it comes time for deployment, you can either substitute IIS, or
license the commercial Omni distribution. Because both support the
same ISAPI extension standards, they’re interchangeable.

In practical terms, your work will proceed by creating your HTML
pages, building and compiling your ISAPI DLL, and refreshing your

http://www.omnicron.ab.ca/httpd
http://www.omnicron.ab.ca/httpd

Figure 2: A Web action item in the Object
Inspector.

On the ’Net

Figure 3: A PageProducer in the Object
Inspector.
browser to review the results. Because your browser and server are on
the same machine, your Web URLs will all start with http://localhost/.
Behind the scenes, the browser will contact the server, and the server will
load your DLL and request the HTML to be sent on to the browser.

Note that you won’t be able to compile your ISAPI DLL while the
server is running, because Delphi won’t be permitted to overwrite
the old DLL being run by the server. Thus, the server will have to
be shut down each time you’re finished testing and started up again
before requesting another page. To shut down Omni, just use its
icon in the system tray. Use the Internet Services Manager to stop
PWS or IIS.

Life will be considerably easier if you configure Delphi to run the
server as the Host Application under the Run | Run Parameters menu.
For the Omni Web server, you need only to place the location of the
“ohttpd.exe” executable in the host field. Configuring the Microsoft
Web servers is far more complex, although configuration for IIS 4.0 is
well documented at the “D files” Web site at http://www.fulgan.com/
delphi/index.asp.

If this will be your first ISAPI application, then you need to know
how to tell Delphi to create an ISAPI DLL. Do this by using the File |

New menu. On the New tab in the New Items dialog box, select Web
Server Application. In the dialog box, select the ISAPI/NSAPI Dynamic

Link Library radio button, and press OK. You’re in business!

Delphi’s ISAPI Architecture
Writing raw ISAPI DLLs isn’t rocket science, but it still involves quite
a bit of specialized knowledge and a knack for thread-safe coding.
Fortunately, Delphi’s WebBroker libraries make it much less tedious,
and a lot more fun. Figure 1 captures the essential components of
a WebBroker application. As you can see, everything is driven by
requests from the server.

When the Web server receives a request, it bundles the data
related to the request and sends it in a new thread to the ISAPI
DLL. The TWebApplication object in the DLL, in turn, uses an
existing WebModule, or, if necessary, creates a new WebModule
instance to service the request. This WebModule executes within
the thread context passed by the server. This means you can use
variables defined within the TWebModule class and be assured they
aren’t shared with other threads. However, global variables will be
shared across threads, so you should avoid them, or be certain
your access is thread-safe.

If you need data access, you’ll be happy to know that the BDE
and ADO datasets can be placed on the WebModule and used in
a thread-safe manner. The only constraint is that, for the BDE, a
TSession object must be placed on the WebModule, and its
AutoSessionName property must be set to True.

A URL that calls an ISAPI DLL should name an action to be
executed. For example, a URL like:

www.Mysite.com/ISAPI/MyIsapi.dll/Signin

will call MyIsapi.dll and hand it the Signin action. When the
WebModule receives the request, it attempts to locate a
TWebAction whose PathInfo matches the action passed in the URL
(see Figure 2). You should generally create one action item with a
Default property set to True to handle the case where no other action
item handles a request made to the DLL.
7 July 2000 Delphi Informant Magazine
Note that, in addition to the PathInfo property, this action item has
a producer named Page2. In my development, I give the PathInfo, the
action, and the producer the same name to make it clear they all work
together. (Yes, you can give an action and a producer the same name.)

There are two ways in which you can respond to a request arriving at
your DLL: with a producer, or via the action item’s OnAction event.
If you respond to the OnAction event, you’ll have to generate your
HTML and pass it back by assigning the Response.Content field:

Response.Content := SomeHTMLGenFunction;

If you’re using a PageProducer, you’ll generally assign a file to the
PageProducer’s HTMLFile property (see Figure 3). This will cause the
file’s contents to automatically be sent as a response.

If you wish, you can keep your entire HTML document in a
PageProducer’s HTMLDoc property. The advantage of this is that
you won’t have to distribute HTML pages with your DLL. The
disadvantage is that your site is much more difficult to update: Every
update will require a re-compile, and your work will slow down every
time you need to cut-and-paste your HTML between Delphi and
your HTML editor. Personally, I never use the HTMLDoc property.

Of course, if your DLL did nothing more than pull HTML files
from disk using PageProducers, then there would be no sense in
creating the DLL. The PageProducer family (TPageProducer,
TQueryTableProducer, TDataSetTableProducer, and

http://www.fulgan.com/delphi/index.asp
http://www.fulgan.com/delphi/index.asp

On the ’Net

procedure TWebModule1.WebModuleBeforeDispatch(
 Sender: TObject; Request: TWebRequest;
 Response: TWebResponse; var Handled: Boolean);
var
 cookieStrings : TStringList;
begin
 SessionID :=
 StrToIntDef(Request.CookieFields.Values['SID'], 0);
 if (SessionID = 0) then // No sessID passed.
 begin
 SessionID = Random(2000000000);
 cookieStrings := TStringList.Create;
 cookieStrings.Add('SID=' + IntToStr(SessionID));
 Response.SetCookieField(
 cookieStrings, ", ", Now+10, False);
 end;
end;

Figure 4: Using a cookie to manage a session ID.
TDataSetPageProducer) is powerful because of its OnHTMLTag
event. The OnHTMLTag procedure for a PageProducer is called during
the parsing of the HTMLFile or HTMLDoc streams. Every time a tag
(marked with <#> delimiters) is encountered, this function receives a
call. The call contains the tag, any arguments to the tag, and a var
parameter named ReplaceText that you can fill with the output you
want to appear in place of the tag.

For example, if your PageProducer is loading a file named
DateTime.htm, and it encounters the tag <#Date>, then the
OnHTMLTag function will be called with the <Date> tag. After
matching on the appropriate tag in this function, you could fill the
ReplaceText parameter with something like “March 15, 2000.” When the
HTML is sent to the browser, this date will appear in place of the tag.

To close out the topic of basic ISAPI development, note that one of
the best things that Delphi does for you is take all of the form, URL,
and cookie arguments submitted by a visitor and package them neatly
in the ContentFields, QueryFields, and CookieFields string lists. For
example, if you want to know the value a user recorded in the “Name”
field of a form, you need only look at the result contained in:

Request.ContentFields.Values['Name']

To become a good ISAPI developer, working with string lists must
become second nature!

Dynamic Web Pages and Sessions
After the elation of building your first ISAPI DLL, you’ll probably
come to the realization that you’re nowhere close to a real Web
application. This is because the Web is a completely stateless environ-
ment. In standard Windows development, you can pop up a dialog
box, have the user fill in some answers, and return to the main form
without any worry that a different user has requested each of these
actions. This isn’t true on the Web! Each request your DLL receives is
logically independent of every other request.

That means that, although your simple ISAPI DLL can now produce
a Web page that includes dynamically-generated information, it will
either generate the same information for every user, or will use only
the immediately preceding page to generate the response, e.g. process-
ing a form page.

To get around this limitation, we need to implement some mecha-
nism for state maintenance. A state mechanism permits you to
store information about a visitor (their “state”) so that each page
request has access to any information the visitor entered on any
earlier page. A prime example of the utility of state management
is an e-commerce application that must remember the products
a visitor has selected, their name and address, and their payment
information, even though all of this information has been entered
on different pages at different times.

Typically, applications also differentiate between a user’s session (state
information stored in the course of their current visit) and a user’s
permanent information. Of course, information entered in a session
usually becomes part of a user’s permanent information. However,
sessions are usually set up to expire after a relatively brief period of
inactivity (20-30 minutes).

The Art of Maintaining State
There are only three mechanisms for identifying and tracking a visi-
tor as they progress from page to page in your site: forms, cookies,
8 July 2000 Delphi Informant Magazine
or fat URLs. In all three cases, you might consider storing the
user’s entire state in the cookie/URL/form. However, unless you’re
implementing a very small site, it’s far more appropriate to include
a numerical ID in the cookie/URL/form that serves as the key to
finding that information on the server.

Forms. To maintain state using forms, you would have to place every
link on your site in an HTML form, and store the state ID in a
hidden field. Then, as the user navigates the site, the ID would be
passed in the Request.ContentFields variable in each request. This isn’t
a viable approach, because of the overhead and pain involved in
implementing every link as a form.

Cookies. To maintain state in a cookie, you’ll generate a unique
session or user ID, and store it in a cookie that is placed on the
visitor’s computer when they first enter the site. On subsequent pages,
this cookie is pulled from the page request and used to access the
visitor’s state information. Figure 4 shows Delphi code to accomplish
this. Note that I’ve placed this code in the WebModuleBeforeDispatch
method of the WebModule. This is because BeforeDispatch is called at
the beginning of every page request, and is thus an ideal place to set
up the session for the rest of the request. Note that all functions called
in the process of satisfying a request are within a single thread. This
means you can assign a variable in one function, and use it in another
if the variable is defined in your WebBroker class.

The advantage of a cookie-based solution is that you can set the
cookie up in your DLL just once, and not have to worry about it
again. Also, you can use cookies to store a permanent ID for a visitor
so that when he or she returns, you can immediately provide them
with personalized information.

The disadvantage of cookies is that some users turn them off. There is a
great deal of fear-mongering, and downright ignorance, when it comes
to cookies — as well as some legitimate concern — so it’s not surprising
that some people disable them. If you’re using cookies to maintain
state, your site simply won’t work for people who turn them off.

It’s also important to recognize the distinction between using cookies
to maintain state, and using them to uniquely identify a user. If you
use cookies to maintain state, they should expire soon after their last
use. If you use cookies to identify a user, it’s very important that he
or she have some control over this process. Not all computers are used
by a single individual, so storing a cookie on the assumption that the
same visitor is using the cookie on each visit could lead to confusion,
or worse, to a significant breach of personal privacy.

On the ’Net

procedure TWebModule1.WebModuleBeforeDispatch(
 Sender: TObject; Request: TWebRequest;
 Response: TWebResponse; var Handled: Boolean);
begin
 SessMgr.SessID :=
 StrToIntDef(Request.QueryFields.Values['SID'], 0);
 if (SessMgr.SessID = 0) then // No session ID passed.
 SessMgr.CreateSessionObject
 else
 if (Not SessMgr.FindSessionObject) then
 Response.SendRedirect('/Timeout.htm');
end;

Figure 5: The OnBeforeDispatch procedure.
Fat URLs. Another solution is to embed a session ID in the URLs
visitors use as they navigate your site. To do this, you will generate a
unique identifier when the first page is requested. On all subsequent
pages, any internal links will have an argument in their URL that
passes along the ID. For example, an internal link in your raw
HTML page might be:

<a href='/ISAPI/Demo.dll/page2.htm?SID=<#SessID>'>

In your page-handling code, you must ensure that every page handles
the <#SessID tag>, substituting the current session ID appropriately.
So, to your user, that internal link shown above might be:

In all page requests after the first, you would pull the session ID from
the Request.QueryFields StringList whenever you needed to access
session information.

As you may already be thinking, the drawback of this approach is that
you not only have to include the session ID tag in every internal link,
you also have to write code in every action item or PageProducer to
substitute in the session ID. Also, every page must be run through
your DLL, even if it wouldn’t otherwise need dynamic processing.
This is because it will now need dynamic processing to substitute in
the session ID.

Magic bullet. It’s tempting to believe there is some other magic bullet
for state management. Indeed, Web tool vendors often advertise
“automatic state management,” and may even imply that they use
some method beyond or outside of this set. However, there isn’t
any magic in Web development, and, upon closer inspection, every
vendor’s state management always comes down to one of these meth-
ods, or some combination of them.

Even with these tips for keeping a session ID around, you may still
be wondering how you can maintain a robust, thread-safe repository
for session information. If so, grab a SoBe (or a cup of Joe) and
settle in. We’re heading for the Delphi Web Application Component
power tour.

The MDWeb Components
One of the truly great things about Delphi is that you can simply sub-
class and override any behavior you don’t like in the VCL’s components.
I truly like the WebBroker libraries; they do a lot to make my life easier.
However, they really just don’t do enough to make Delphi a contender
in real-world Web development. And that’s where Delphi’s strength in
component subclassing comes in handy. The MDWeb components,
derived from Delphi’s PageProducer family, take all of the WebBroker’s
strengths and add automatic, thread-safe session management. If you
follow the discussion of the MDWeb components, you should gain
a good idea of how to implement your own session management
controls. Of course, you’re also welcome to visit the Delphi Informant
Magazine Web site and download the MDWeb components that
accompany this article (see end of article for details).

The heart of the MDWeb components is TMDSessionMgr. This class
is derived from TPageProducer, and has been modified to do two
things:
1) Automatically replace “session-level” tags (Session ID, Date) in

every file that passes through the system.
2) Provide seamless access to an in-memory session variable store

(a B-tree implementation). Note that the session manager
9 July 2000 Delphi Informant Magazine
doesn’t handle any particular page request; it works with all
page requests.

You develop with the MDWeb components just as you do with standard
WebBroker components. However, you must drop an MDSessionMgr
component on your WebModule and make sure it’s moved to the first
position in the creation order list. This ensures that basic session manage-
ment capabilities are implemented. Then, instead of using WebBroker
PageProducers, you use the corresponding MDWeb components.

The operation of the MDWeb components is identical to the Web-
Broker components, except that when these components are finished
processing their HTML, they call the MDSessionMgr so it can
process any session-level tags. These can include any tags you want to
support on a global basis: Session ID, Date, Time, random number
generation, or even file includes.

If you’re using URLs to maintain state, you’ll embed the
<#SessID> tag in the links that tie your pages together as previ-
ously described. When a page is sent to a visitor, its Session ID
will be automatically inserted into these links so that subsequent
page requests pass the ID along. Although you still have to ensure
that all of your page links have the embedded session tag, this
automatic tag substitution makes URL-based session management
quite a bit more tractable. Note that the MDWeb library also
provides a function that can be used in an action item’s OnAction
event to simplify the loading of pages that need no other process-
ing than the substitution of session-level tags.

TMDSessionMgr.ContentFrom-File(f ilename: string): string;

If you use this function, you can load an HTML file without having
to create a PageProducer. Of course, you may still prefer to use cook-
ies to store/access the session ID to avoid the hassle of embedding
the ID in the URL.

While global substitution is an important task for TMDSessionMgr,
the big advantage in using this class is its management of session data.
When a visitor arrives at the site, their first page request won’t have
an associated session ID in the URL or in a cookie. When the DLL
sees this request, it will trigger the creation of a session data object
(see Figure 5). When created, this object will automatically generate
a random session ID in the range of 2 to two billion. In addition to
the session ID, the session data object holds a string list in which all
data for a session will be stored.

The session data is stored in a thread-safe, in-memory, B-tree for fast
access. The TMDSessionMgr object (shown in Listing One, beginning
on page 11) hides all access to the B-tree, so you can swap in a different
storage mechanism without having to change your project code. For
example, if your site is so busy that you need to move to another server

On the ’Net
or servers, you could move session data to a shared database, and access
it from within your TMDSessionMgr object instead of the B-tree.

You may or may not choose to make use of our sample code when
starting your session-aware project, but the outline should be clear:
A session ID must be generated if a user doesn’t already have one, and
this ID must index a data structure or database record holding all of a
user’s session information. If you use a database table to hold session
information, you won’t have to worry about the thread safety of your
data access, but you may have performance issues. If you do store
session information in memory, you should gate your data access with
critical sections to ensure thread safety.

If you choose to manage sessions by embedding session IDs in the
intra-site URLs, some mechanism for simplifying the substitution of
actual session IDs should be implemented as well.

Enough Theory!
Now that you know some session management theory, let’s see how
things work in a sample application. Recall that the first thing a
10 July 2000 Delphi Informant Magazine

<FORM METHOD="post"
 Action="/ISAPI/DemoWeb.dll/Page3?SID=<#SessID>">
<TABLE WIDTH="550" CELLPADDING="0" CELLSPACING="0"
 BORDER="0" ALIGN="center">
<TR>
<TD ALIGN="right" WIDTH="50%">
 What is your favorite color?

</TD>
<TD ALIGN="left">
 <INPUT NAME="COLOR" MAXLENGTH="12" >

</TD>
</TR>
<TR>
<TD ALIGN="middle" COLSPAN="2">

<INPUT TYPE="submit" NAME="Submit" VALUE=" Submit ">

<INPUT TYPE="reset" NAME="reset" VALUE=" Reset ">
</TD>
</TR>
</TABLE>
</FORM>

Figure 6: The color preference HTML form.

procedure TWebModule1.WebModule1SummaryAction(
 Sender: TObject; Request: TWebRequest;
 Response: TWebResponse; var Handled: Boolean);
begin
 SessMgr.Values['MOVIE'] :=
 Request.ContentFields.Values['MOVIE'];
 // Ask the "Summary" PageProducer to get the page.
 Response.Content := Summary.Content;
end;

Figure 7: Getting information from a form before generating a
response page.

procedure TWebModule1.SummaryHTMLTag(Sender: TObject;
 Request: TWebRequest; Response: TWebResponse;
 var Handled: Boolean);
begin
 if (AnsiCompareText(TagString, 'FOOD') = 0) then
 ReplaceText := SessMgr.Values['FOOD']
 else if (AnsiCompareText(TagString, 'COLOR') = 0) then
 ReplaceText := SessMgr.Values['COLOR']
 else if (AnsiCompareText(TagString, 'MOVIE') = 0) then
 ReplaceText := SessMgr.Values['MOVIE'];
end;

Figure 8: Using session values.
Delphi Web Application does when it receives a request is call the
OnBeforeDispatch function of the WebModule. This occurs even before
an action is selected to handle the request. This is the perfect opportunity
to check whether the current visitor has been assigned a session, and to
either create or find a session object that can be used in the remainder of
this request. Again, refer to Figure 5 to see the code to do this.

In the example in Figure 5, we attempt to pull a session ID from
the URL using the Request.QueryFields parameter. Thus, if the URL
requesting this page is:

www.mysite.com/ISAPI/Demo.dll/Action?SID=1234

then the “SID” index to the QueryFields StringList will retrieve the
value “1234.” If no SID argument was passed, then the result of
this retrieval would be 0. Note that we could use cookies instead by
simply using Request.CookieFields.Values['SID'] in the state-
ment. We would also have to make sure the cookie is stored in the
call to CreateSessionObject.

If the Session ID is 0, then this request comes from a new visitor. In
this case, we generate a new session object with the CreateSessionObject
procedure. Otherwise, we tell the SessMgr to get the session object ready
for use with the FindSessionObject function. In either case, the result
is the same: The SessMgr object in the current thread will now be
able to store or retrieve user values specific to the current visitor. The
actual storage or retrieval will occur as this particular request percolates
through the Web action items and/or MDPageProducer classes. Let’s see
how this happens.

Assume for a moment that our site needs to assess the current color
preference of our visitor. This information will be used later in the visit,
and thus must be stored in the current user’s session variables for later
use. The HTML for the color request form is shown in Figure 6.

When the color preferences form is filled out and submitted, the Page3
action will be requested. Note the inclusion of the SessionID in the page
request. It’s in our response to this new action that we process the informa-
tion sent from this form. In this case, we store the color preference via a
function call in the action item that handles the page request:

procedure TWebModule1.WebModule1Page3Action(
 Sender: TObject; Request: TWebRequest;
 Response: TWebResponse; var Handled: Boolean);
begin
 SessMgr.Values['COLOR'] :=
 Request.ContentFields.Values['COLOR'];
end;

In case you’re wondering, the actual page request is handled by an
MDPageProducer class (see Listing Two on page 13). Recall that there
are two ways to respond to a page request: via an OnAction procedure
in the action item, and via a PageProducer (or TableProducer, etc.).
As shown here, it’s also acceptable to use both. However, a word
of warning is in order. You may be tempted to pull some data
from your database in the OnAction procedure hoping to use it in
the PageProducer when responding to tags in the page. This won’t
work if you attach the PageProducer to the action item, because the
WebBroker will always call the PageProducer before the OnAction
procedure. This seems to be glaringly non-obvious behavior for the
WebBroker. Fortunately, a work-around is easy enough: Access the
PageProducer manually in the OnAction procedure, and don’t link
the PageProducer and action item. For example, in an OnAction
procedure, you might write the code shown in Figure 7.

On the ’Net
Note that the Response.Content string is where all the HTML to
be streamed out to the user is stored. We fill it manually here with
the output of the Summary PageProducer. In a database application,
you would place your database access code before the call to the Page-
Producer, if the producer needed data to perform its tag substitutions.

Now that you’ve seen how session data is stored, it’s probably pretty
obvious how to access this information. For purposes of illustration,
however, see Figure 8, wherein we pull all of the visitor’s favorites and
use them in tag substitutions.

As you can see, we pull data the same way we set the data. There
are also functions for storing and accessing integer values in the
MDWeb library.

Conclusion
The problem I sometimes have in explaining session management is that
storing and accessing data in the Session Manager seems pretty boring
and obvious. It’s not! Keep in mind that a busy site might have hundreds
or even thousands of visitor sessions running concurrently. The data
storage and access for every one of these visitors must be kept straight.
The art isn’t in storing and retrieving the data; it’s in doing so in a
manner that ensures that every visitor sees only their own information.

Having a lightweight mechanism for maintaining state is the gateway
to all of the more advanced work you’ll do on the Web. Do you
want to create an e-commerce site? Do you want to provide a highly
personalized experience for your visitors? Need to manage logins and
secure site access? In all of these cases, session management is the
foundation from which you will build. ∆

All source described in this article (including the B-tree code) is available
on the Delphi Informant Magazine Complete Works CD located in
INFORM\00\JUL\DI200007MB.
11 July 2000 Delphi Informant Magazine
Dr Mark Brittingham believes the secret of happiness is to radically change careers
every four to five years. He has worked at Bell Laboratories (now Lucent Technologies)
in Artificial Intelligence Research, at AT&T in user interface design, and as president
of Brittingham Software Design. He created a Windows-based vertical market health
and fitness package whose royalties now pay the bills. He is currently doing Web
development in Delphi and Cold Fusion as a freelance Internet consultant.
Begin Listing One — TMDSessionMgr Object
unit MDSessMgr;

interface

uses
 Windows, HTTPApp, Classes, SysUtils, MDBTree;

type
 TMDSessionMgr = class(TPageProducer)
 private
 protected
 function HandleTag(const TagString: string;
 TagParams: TStrings): string; override;
 public
 SessID : Cardinal;
 SessNode : PTNode;
 procedure DoTagEvent(Tag: TTag;
 const TagString: string; TagParams: TStrings;
 var ReplaceText: string); override;
 function ContentFromFile(filename: string): string;
 procedure CreateSessionObject(inUID: Integer = 1);
 function FindSessionObject: Boolean;
 procedure SetValue(const Name, Value: string);
 function GetValue(const Name: string): string;
 procedure SetIntValue(const Name: string;
 const Value: Integer);
 function GetIntValue(const Name: string): Integer;
 property Values[const Name: string]: string
 read GetValue write SetValue;
An Extension of Your Own
ISAPI URLs are pretty ugly and hard to remember. A typical URL might
look like this:

www.something.com/ISAPI/Your.DLL/Action

However, there is a way to skip the explicit DLL call and simply name
the files you want to use in your URLs. All you need to do is make a
simple change in your Web server, and a matching change in your Delphi
DLL. In the examples that follow, I assume that you’ll name your HTML
files with a .dwm extension (for Delphi Web Markup) in order to clearly
differentiate them from standard .htm files.

To set up .dwm files in Omni, you have to make an addition to the External
files listing. To do this, select Properties | Web Server Globals
Settings and click the External tab. Once there, you’ll add a new entry. In
the Virtual field, place the name of your extension: .dwm. In the Actual
field, place the path to the DLL you are developing. Next, click on the MIME
tab, and add a new MIME type: enter wwwserver/isapi in the Virtual
field, and .dwm in the Actual field. In the External and the MIME tabs, be
sure to press the Add button after filling in your fields!

In IIS 5.0, you’ll right click on the HTTP server and select Properties.
In the resulting dialog box, select the Home Directory tab and press the
Configuration button. In the dialog box that results, click the Add
button and enter the path to your DLL in the field labeled Executable.
Enter your extension in the Extension field (.dwm). Select the radio
button labeled All Verbs so your DLL will handle all of the page
request types. Make sure that Script Engine is checked and click
the OK button. Now, as far as your Web server is concerned, all page
requests that end with .dwm will be sent to your DLL.

There are several things you now need to keep in mind while developing
your DLL. First, all actions must use the complete file name and path
from the Web server root. Thus, if you place a file named Signin.dwm at
the Web root, the corresponding action in your DLL will have a PathInfo
entry of /Signin.dwm. You can’t omit the extension. Next, be aware that
even if you’d like to simply handle an action that redirects the caller to
another page, you’ll still need to create a corresponding .dwm file even
if you decide to leave it empty.

Be aware that there is no way to stream image or other binary data out
to a Web page when using custom extensions. If you stream charts or
other binary data, do so in a separate DLL.

Finally, the MDWeb components have to be slightly modified to
work with custom extensions. These modifications are included in the
MDWeb components accompanying this article.

— Dr Mark Brittingham

1

On the ’Net
 property IntValues[const Name: string]: Integer
 read GetIntValue write SetIntValue;
 end;

procedure Register;
procedure MergeStrings(Dest, Source: TStrings);

implementation

procedure MergeStrings(Dest, Source: TStrings);
var
 I, DI: Integer;
begin
 for I := 0 to Source.Count - 1 do begin
 try
 if Pos('=', Source[I]) > 1 then
 begin
 DI := Dest.IndexOfName(Source.Names[I]);
 if DI > -1 then
 Dest[DI] := Source[I]
 else
 Dest.Add(Source[I]);
 end
 else
 if (Dest.IndexOf(Source[I]) = -1) then
 Dest.Add(Source[I]);
 except
 end;
 end;
end;

procedure TMDSessionMgr.CreateSessionObject(
 inUID: Integer = 1);
begin
 SessNode := SessTree.CreateNode(inUID);
 SessID := SessNode^.ID;
end;

function TMDSessionMgr.FindSessionObject: Boolean;
begin
 SessNode := SessTree.FindNodeByID(SessID);
 Result := (SessNode <> nil);
end;

procedure TMDSessionMgr.DoTagEvent(Tag: TTag;
 const TagString: string; TagParams: TStrings;
 var ReplaceText: string);
var
 astr : string;
 InStream : TStream;
 Month, Day, Year : Word;
begin
 aStr := Uppercase(TagString);
 if (aStr = 'SESSID') then
 ReplaceText := IntToStr(SessID)
 else if (aStr = 'INCLUDE') then
 begin
 try
 InStream := TFileStream.Create(TagParams[0],
 fmOpenRead + fmShareDenyWrite);
 if InStream <> nil then
 try
 ReplaceText := ContentFromStream(InStream);
 finally
 InStream.Free;
 end;
 except
 ReplaceText := 'Error in f ile include! ';
 end;
 end
 else if (aStr = 'CURDATE') then
 ReplaceText := DateToStr(Date)
 else if (aStr = 'RAND') then
 begin
 Randomize;
2 July 2000 Delphi Informant Magazine
 ReplaceText := IntToStr(Random(1000));
 end
 // If you place the STOREFORMVARS tag in a Form-response
 // page, it will automatically copy all form responses
 // to the visitor's session.
 else if (aStr = 'STOREFORMVARS') then
 try
 if (SessNode <> nil) then
 MergeStrings(SessNode^.Data,
 Dispatcher.Request.ContentFields);
 ReplaceText := ' ';
 except
 end
 else
 // User can implement his own global subsets.
 inherited DoTagEvent(Tag, TagString,
 TagParams, ReplaceText);
end;

function TMDSessionMgr.HandleTag(const TagString: string;
 TagParams: TStrings): string;
var
 astr : string;
 i : Integer;
begin
 astr := Inherited HandleTag(TagString, TagParams);
 if (astr =") then
 begin
 astr := '<#' + TagString;
 for i := 0 to TagParams.Count - 1 do
 astr := astr + ' ' + TagParams[i];
 astr := astr + '>';
 end;
 Result := astr;
end;

function TMDSessionMgr.ContentFromFile(
 filename: string): string;
var
 InStream: TStream;
begin
 InStream := TFileStream.Create(filename,
 fmOpenRead + fmShareDenyWrite);
 if InStream <> nil then
 try
 Result := ContentFromStream(InStream);
 finally
 InStream.Free;
 end;
 else
 Result := '<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML ' +
 '3.2 Final//EN"><HTML><HEAD><TITLE>Error</TITLE>' +
 '</HEAD>'<BODY>Error: The page you have requested ' +
 'cannot be found. Please report this error to the' +
 ' webmaster of this site!</BODY></HTML>';
end;

procedure TMDSessionMgr.SetValue(
 const Name, Value: string);
begin
 SessNode^.Data.Values[Name] := Value;
end;

function TMDSessionMgr.GetValue(
 const Name: string): string;
begin
 Result := SessNode^.Data.Values[Name];
end;

procedure TMDSessionMgr.SetIntValue(const Name: string;
 const Value: Integer);
begin
 SessNode^.Data.Values[Name] := IntToStr(Value);
end;

On the ’Net
function TMDSessionMgr.GetIntValue(
 const Name: string): Integer;
begin
 Result := StrToIntDef(SessNode^.Data.Values[Name], -1);
end;

procedure Register;
begin
 RegisterComponents('Internet', [TMDSessionMgr]);
end;

end.

End Listing One
Begin Listing Two — TMDPageProducer Object
unit MDPageProducer;

interface

uses
 Windows, SysUtils, HTTPApp, Classes, MDSessMgr;

type
 TMDPageProducer = class(TPageProducer)
 private
 FSessionMgr : TMDSessionMgr;
 protected
 function HandleTag(const TagString: string;
 TagParams: TStrings): string; override;
 public
 constructor Create(AOwner: TComponent); override;
 function Content: string; override;
 end;

procedure Register;

implementation

constructor TMDPageProducer.Create(AOwner: TComponent);
var
 I: Integer;
 Component: TComponent;
begin
 // This MDPageProducer Create routine will look through
 // all the components already created and, if one is a
 // SessionMgr, capture a pointer to it. This way we don't
 // have to manually chain the Session handling on to the
 // normal page handling. This is why it's critical that
 // the SessionMgr comes before any MDPageProducers in
 // the creation order of the WebModule.
 inherited Create(AOwner);
 if Owner <> nil then
 for I := 0 to Owner.ComponentCount - 1 do begin
 Component := Owner.Components[I];
 if Component is TMDSessionMgr then
 FSessionMgr := TMDSessionMgr(Component);
 end;
end;

function TMDPageProducer.HandleTag(const TagString: string;
 TagParams: TStrings): string;
var
 astr : string;
 i : Integer;
begin
 // We override this function because we don't want the
 // default behavior. By default a PageProducer leaves a
 // blank if it can't handle a tag. However, we want the
 // tags to survive so that the Session Manager has a
 // chance to handle any that we don't. So, I just undo
 // the erase that is normally done here. Also, I have a
 // philosophical problem with not leaving the tag in; it
 // makes it harder to see what work remains to be done,
13 July 2000 Delphi Informant Magazine
 // and easier to overlook things during development.
 astr := Inherited HandleTag(TagString, TagParams);
 if (astr = ") then
 begin
 astr := '<#' + TagString;
 for i := 0 to TagParams.Count - 1 do
 astr := astr + ' ' + TagParams[i];
 astr := astr + '>';
 end;
 Result := astr;
end;

function TMDPageProducer.Content: string;
begin
 // Key part - after passing the content through the
 // normal WebBroker channels(the inherited Content),
 // I pass it through the session object as well.
 Result := Inherited Content;
 if (FSessionMgr <> nil) then
 Result := FSessionMgr.ContentFromString(Result);
end;

procedure Register;
begin
 RegisterComponents('Internet', [TMDPageProducer]);
end;

end.

End Listing Two

14 July 2000 Delphi Informant Magazine

Columns & Rows
Microsoft SQL Server 7 / Distributed Management Objects / Windows NT / Delphi 3-5

By Jason Perry

Fi
Exploiting SQL Server 7 DMO
Part II: A Database Tool and a Security Object
g

In Part I of this two-part series, we looked at the basics of SQL Server DMO objects. We
also looked at a script-writing tool for SQL developers, named SSB (SQL Script Builder).
In this installment, we’ll look at DIRT, or Database
Information and Reconciliation Tool, for cross-
database comparisons. We’ll also look at a simple
security object, and demonstrate how it can be
used in application development.

How do you keep your test database in sync with
your production database? How do you keep your
replicated servers in sync? What if you have multiple
environments for the same database? SQL-DMO can
be used to compare server objects and look for incon-
sistencies. In this wimpy demo, I’ll show you how
to use the Tables, Columns, and StoredProcedures col-
lections and their corresponding Table and StoredProc
objects to build an analysis utility to compare server
objects for consistency. I will also demonstrate how
the SQLServer and Database objects can be used to
report on database sizes and server activity.

The first thing I did was write a method to
connect to the named source server and named
destination server:

Building a Database Information and
Reconciliation Tool (DIRT)
ure 1: DIRT disconnected.
function ConnectSource(sServerName:
 string): Boolean;
function ConnectDest(sServerName:
 string): Boolean;

The argument for each is the server name for the
source and for the destination. The methods create
two separate server objects to be referenced as public
members of the class. Next, I have two methods that
create and store a reference to two database objects:

function ConnectDBSource(sDBName:
 string): Boolean;
function ConnectDBDest(sDBName:
 string): Boolean;

The argument is the name of the database for
each one. This is pretty much a no-brainer. It’s
almost exactly what I did to create the database
objects in SSB.

DIRT uses the same ODBC connection you cre-
ated in SSB. Start it up and you’re presented
with a screen that has a Conn Source and a Conn

Dest button (see Figure 1). Type in the names
of the server and the database. Click the cor-
responding Conn... button to create the server
and database objects.

If the objects connected correctly, you will hear a
light “beep.”

SQLServer and Database Attributes
The SQLServer and Database objects have many
attributes that can help you observe the status of
your server and databases. I exploited some of these
attributes in DIRT. To see the SQLServer object
attributes, click each of the ...Server Information but-
tons (see Figure 2). These call a small method that
adds lines to the TMemo. They use the various
attributes of the SQLServer object (see Figure 3).

Columns & Rows
See the SQL Server books online for an accurate definition of each
attribute. Where practical, you could write a simple comparison
routine to make sure each server has similar attributes.

Next, click each of the ...DB Information buttons (see Figure 4). These,
like the server info method, simply add lines to the TMemo about the
database sizes (see Figure 5).

Running out of disk space in a database can be catastrophic. You
could write a service to poll the database size and e-mail you if it
reaches a certain threshold. The possibilities are endless.

The Tables, Columns, and StoredProcedures Collections
Just like SSB, DIRT uses the Tables, Columns, and StoredProcedures
collections to enumerate the Table, Column, and StoredProcedure

objects for a
15 July 2000 Delphi Informant Magazine

Figure 2: DIRT server information.

procedure TboDirt.ServerInfo(oServer: _SQLServe
begin
 if Assigned(CompareUI) then begin
 Banner(oServer.Name + ' General Information
 CompareUI.Add(' Version: '
 oServer.VersionString);
 CompareUI.Add(' Databases: '
 IntToStr(oServer.Databases.Count));
 CompareUI.Add(' Host Name: '
 oServer.HostName);
 CompareUI.Add(' Language: '
 oServer.Language);
 CompareUI.Add(' Connection Id: '
 IntToStr(oServer.ConnectionId));
 CompareUI.Add(' Local Network Name: '
 oServer.NetName);
 CompareUI.Add(' Login Timeout(sec): '
 IntToStr(oServer.LoginTimeout));
 CompareUI.Add(' Query Timeout(sec): '
 IntToStr(oServer.QueryTimeout));
 CompareUI.Add(' Blocking Timeout(ms): '
 IntToStr(ord(oServer.BlockingTimeout)));
 CompareUI.Add(' Command Terminator: '
 oServer.CommandTerminator);
 CompareUI.Add(' This Application Name: '
 oServer.ApplicationName);
 CompareUI.Add(' Auto Reconnect Flag: '
 IntToStr(ord(oServer.AutoReconnect)));
 CompareUI.Add(' Default Null Flag: '
 IntToStr(ord(oServer.AnsiNulls)));
 CompareUI.Add(' Network Packet Size: '
 IntToStr(oServer.NetPacketSize));
 end;
end;

Figure 3: Adding lines to the Memo component.
specific data-
base. I wrote
a couple of
simple com-
parison rou-
tines to take
the source and
destination
databases and
compare some
entity attri-
butes (see
Figure 6). This
is an invalu-
able technique
for reconciling
r);

');
 +

 +

 +

 +

 +

 +

 +

 +

 +

 +

 +

 +

 +

 +
the differences between two databases. Nothing is worse than having a
test database that works, and a production one that doesn’t.

The source is simple, as shown in Listing One (beginning on page 18).
First, we spin through the source Tables collection and get a reference
to each table object. Next, we spin through the Tables collection of
the destination server object. I want to make an important note here.
Notice the statement:

DB_Dest.Tables.Item(lcv2, DB_Dest);

I could have passed the physical name of the source table
(oSourceTable.Name) here to return the Table object. The problem is
that if the table isn’t in the Tables collection on the destination database,
it will raise an exception that it is not found. Because I wanted a more
graceful way of reporting table discrepancies, I spun through the Tables
collection looking for the same named table. Now I can report on the
discrepancy by adding a line to the TMemo.
Figure 4: DIRT database information.

Figure 5: Adding information about database sizes.

procedure TboDirt.DBInfo(oDB: _Database);
begin
 if Assigned(CompareUI) then begin
 Banner(oDB.Name + ' General Information');
 CompareUI.Add(' Owner: ' + oDB.Owner);
 CompareUI.Add(' Tables: ' +
 IntToStr(oDB.tables.Count));
 CompareUI.Add(' Views: ' +
 IntToStr(oDB.Views.Count));
 CompareUI.Add(' Stored Procs: ' +
 IntToStr(oDB.StoredProcedures.Count));
 CompareUI.Add(' Create Date: ' +
 oDB.CreateDate);
 CompareUI.Add(' Database Size(mb): ' +
 IntToStr(oDB.Size));
 CompareUI.Add(' Space Avail(kb): ' +
 IntToStr(oDB.SpaceAvailable));
 CompareUI.Add(' Data Disk Usage(mb): ' +
 FloatToStr(oDB.DataSpaceUsage));
 CompareUI.Add(' Index Space Usage(kb): ' +
 FloatToStr(oDB.IndexSpaceUsage));
 CompareUI.Add(' Database File Path: ' +
 oDB.PrimaryFilePath);
 end;
end;

s

Columns & Rows
Lastly, I spin through the Columns collection for each table (don’t
forget the SQL-DMO object hierarchy) and compare the source
and destination table column attributes. This is a common place for
DBAs to make errors.

You can do other things here, as well. Compare the table scripts
between tables to make sure they were identically created, that
indexes are the same, and to check constraints, rules, etc. The
power is awesome!

Building a COM/SQL-DMO Role-based Security Object
You’ve seen a couple of neat tools that can be written using SQL-
DMO objects. What about using them in application develop-
ment? In this small demo, I’ll create a simple COM-based security
object. It interrogates the SQLServer object to see if a given
login is in a particular role, using the DatabaseRoles collection.
Some additional methods are added to return the users’ roles,
available roles, and the ability to add or remove a person to/from
a particular role.

First, I created a type library and Automation object named
TSQLDMO_Security. Avoiding a lengthy lesson in the Delphi
COM Expert, the Automation object has methods named GetRoles,
GetUsers, IsUserInRole, GetUserRoles, AddUserToRole,
RemoveUserFromRole, and Login (see Figure 7).
16 July 2000 Delphi Informant Magazine

Figure 6: Comparing tables with DIRT.

Figure 7: The SQLDMO_Security class in Delphi’s Type Library editor.
In my sample unit (oSecurity.pas), I overrode the Initialize method
(see Figure 8).

I did this so the SQLServer object would be created the first time it
was called, and each time additional users called it. Now each user ha
its own server connection. If all your users are connecting through
a single application, you may want to make the SQLServer object a
singleton to save on resources and increase performance. Note: Set
that ApplicationName and your DBAs will love you.

All you have to do on the application side is create the Automation
object and call the Login method:

// A login routine. Wimpy.
function TSQLDMO_Security.Login(const sServer,
 sDatabase, sLogin, sPWD: WideString): WordBool;
begin
 oServer.Connect(sServer, sLogin, sPWD);
 Result := oServer.VerifyConnection(
 SQLDMOConn_ReconnectIfDead);
end;

Simply pass in the name of the server, the database, the login, and
the password of the connection. If the login was successful, it will
return True.

Next, let’s talk about the GetRoles and GetUsers implementation,
shown in Figure 9.
procedure TSQLDMO_Security.Initialize;
begin
 inherited Initialize;
 if Assigned(oServer) then
 oServer := nil;
 else
 begin
 oServer := getServer;
 oServer.Set_QueryTimeout(5);
 oServer.Set_LoginSecure(True);
 oServer.Set_ApplicationName(
 'SQLDMO Security Object');
 end;
end;

Figure 8: Overriding the Initialize method.

// Return a database object by name.
function TSQLDMO_Security.getDB(
 sDBName: string): _Database;
begin
 Result := oServer.Databases.Item(sDBName, '');
 if not Assigned(Result) then
 raise Exception.Create('The database ' +
 sDBName + ' was not found.');
end;

// Get the roles collection for a speci ied database.
function TSQLDMO_Security.GetRoles(
 const sDBName: WideString): OleVariant;
begin
 Result := getDB(sDBName).DatabaseRoles;
end;

// Get a users collection for a speci ied database.
function TSQLDMO_Security.GetUsers(
 const sDBName: WideString): OleVariant;
begin
 Result := getDB(sDBName).Users;
end;

Figure 9: Implementing GetRoles and GetUsers.

f

f

Columns & Rows
I created a private getDB method to return the database object by
name. Very simply, once the Automation object is created, you call
its GetRoles or GetUsers collection with the argument of the database
17 July 2000 Delphi Informant Magazine

procedure TForm1.FillUsers;
var
 o : OleVariant;
 lcv : Integer;
begin
 o := Security.GetUsers(txtDatabase.Text);
 lstUsers.Items.Clear;
 for lcv := 1 to o.Count do
 lstUsers.Items.Add(o.Item(lcv).Name);
end;

procedure TForm1.FillUserRoles(sLogin: WideString);
var
 o : IStrings;
 lcv : Integer;
begin
 o := Security.GetUserRoles(sLogin, txtDatabase.Text);
 if Assigned(o) then
 begin
 lstUserRoles.Items.Clear;
 for lcv := 0 to o.Count-1 do
 lstUserRoles.Items.Add(o.Item[lcv]);
 end
 else
 raise Exception.Create('User not found in database');
end;

Figure 10: This fills a TListBox with the resulting collections.

function TSQLDMO_Security.GetUserRoles(const Login,
 sDBName: WideString): IStrings;
var
 lcv : Integer;
 oUser : _User;
 oStrings : TStrings;
 oRoles : NameList;
 lFound : Boolean;
 oDB : _Database;
 oSA : IStrings;
begin
 lFound := False;
 for lcv := 1 to getDB(sDBName).Users.Count do begin
 oDB := getDB(sDBName);
 if Pos(Login, oDB.Users.Item(Login).Login) > 0 then
 begin
 oUser := oDB.Users.Item(Login);
 oRoles := oUser.ListMembers;
 lFound := True;
 Break;
 end
 else
 begin
 lFound := False;
 Continue;
 end;
 end;
 if lFound then
 begin
 oStrings := TStringList.Create;
 GetOleStrings(oStrings, OSA);
 for lcv := 1 to oRoles.Count do
 oSA.Add(oRoles.Item(lcv));
 Result := oSA;
 end
 else
 Result := nil;
end;

Figure 11: Implementing the GetUserRoles method using the
IStrings interface.
name. They each return an OleVariant that represents the DatabaseR-
oles and Users collections. Figure 10 shows some of the code from the
test application that fills a TListBox with the resulting collections.

Looks familiar doesn’t it? Just spin through the collections and
exploit the attributes you need, and voilà! You now have a list of
DatabaseRoles and Users.

To help convince you that the SQL-DMO objects are flexible, I
implemented the GetUserRoles method using the IStrings interface,
instead of the “built-in” collection mechanism (see Figure 11).

This method will return an IStrings of roles for a specific login and
database. What I did was spin through the Users collection to get the
User object for the specified Login. If I find a user, I return a NameList
collection of the roles the user is a member of. As an interesting twist,
I implement the IStrings interface using GetOleStrings, and fill it up by
spinning through the NameList collection. Now the test application can
treat the list as a TStrings collection.

Now for the last methods — IsUserInRole, AddUserToRole, and
RemoveUserFromRole (see Figure 12). These methods are simple.
They each take the arguments Login, Role, and Database Name.

What’s important here are the IsMember method of the User object,
and the AddMember and DropMember methods of the DatabaseRoles
object. The IsUserInRole method gets the specified database and the
specified user in the database, and asks the question: “Is this user
in this role?” The Add/Drop methods get the specified database and
the specified Role object, and invoke the AddMember/DropMember
methods with the login argument. Could this be any easier?

So, what good is an Automation object without a test application?
Well, I included one of those too (see Figure 13).

Simply fill out the pertinent server information and click Login. Select
a database role and a user. In the far right-hand side, TListBox will
show a list of roles that the person has. Click the Add Selected Role

to Selected User and Remove Selected Role from Selected User buttons,
and watch the user role list. Open a copy of Enterprise Manager to
confirm that the role was added. The Is Selected User in Selected Role?
button tests whether ... never mind — it’s obvious.
// So, is this user login a member of the speci ied role?
function TSQLDMO_Security.IsUserInRole(
 const Login, Role, sDBName: WideString): WordBool;
begin
 Result :=
 getDB(sDBName).Users.Item(Login).IsMember(Role);
end;

// Add a user to a role.
procedure TSQLDMO_Security.AddUserToRole(
 const Login, Role, sDBName: WideString);
begin
 getDB(sDBName).DatabaseRoles.Item(Role).AddMember(Login);
end;

// Remove a user from a role.
procedure TSQLDMO_Security.RemoveUserFromRole(
 const Login, Role, sDBName: WideString);
begin
 getDB(sDBName).DatabaseRoles.Item(Role).
 DropMember(Login);
end;

Figure 12: The IsUserInRole, AddUserToRole, and
RemoveUserFromRole methods.

f

Figure 13: A test application.

Columns & Rows

 // Update the UI;
Conclusion
SQL-DMO is vast. This series has touched on the major collections
and objects to help get you started on your enterprise tool. You can
rebuild indexes, check for page integrity, add indexes, change object
attributes, replicate your servers, and more. Writing smart tools to
manage routine database maintenance, such as status reporting and
user security issues, are now a simple chore with the SQL-DMO
objects. Hopefully, I’ve helped open a new world of possibilities for
managing your enterprise SQL Servers. ∆

Resources
§ Compass Technology Management: http://www.compass.net
§ Object-oriented JAVA Enterprise Architecture Experts:

OOP.COM, http://www.oop.com
§ Microsoft SQL-DMO FAQ: http://msdn.microsoft.com/library/

techart/msdn_dmoovrvw.htm
§ Object-oriented Programming in Delphi and Java: http://

www.oop.com

Jason ‘Wedge’ Perry is a system architect for OOP.COM in Chesapeake, VA.
Prior to accepting this position, Wedge was a self-employed consultant in
development positions ranging from grunt programmer to system architect.
In his spare time, Wedge races a Kawasaki KX250 moto-cross motorcycle for
the Elizabeth City MX Club.
Begin Listing One — DIRT
procedure TboDirt.CompareTables;
var
 lcv, lcv2, lcv3 : Integer;
 oSourceTable, oDestTable : _Table;
 lFound, lColErr : Boolean;
begin
 if not(Assigned(SQLDMO_Source)) or
 not(Assigned(SQLDMO_Dest)) then
 Exit;

 Banner('Table Discrepencies');
 for lcv := 1 to DB_Source.Tables.Count do begin
 // Get the f irst table's name.
 oSourceTable := DB_Source.Tables.Item(lcv, DB_Source);
 oDestTable := nil;
18 July 2000 Delphi Informant Magazine
 if Assigned(CompareUI) then
 CompareUI.Add('-------------------------------');
 if Assigned(CompareUI) then
 CompareUI.Add('Table: ' + oSourceTable.Name);
 // if Assigned(CompareUI) then
 // Application.Processmessages;
 // See if the number of tables is consistent.
 if DB_Source.Tables.Count > DB_Dest.Tables.Count then
 begin
 if Assigned(CompareUI) then
 CompareUI.Add(
 ' ** There are additional tables in Source.');
 end
 else if DB_Source.Tables.Count <
 DB_Dest.Tables.Count then
 begin
 if Assigned(CompareUI) then
 CompareUI.Add(
 ' ** There are missing tables in Source.');
 end
 else if DB_Source.Tables.Count =
 DB_Dest.Tables.Count then
 begin
 if Assigned(CompareUI) then
 CompareUI.Add(' Table Counts Match');
 end;
 // Look for that table name in destination database.
 // Note: The table could be out of order. If it isn't
 // found, the table should be noted as missing.
 lFound := False;
 for lcv2 := 1 to DB_Dest.Tables.Count do begin
 oDestTable := DB_Dest.Tables.Item(lcv2, DB_Dest);
 // In case the table doesn't exist.
 if not (Assigned(oDestTable)) then
 begin
 if Assigned(CompareUI) then
 CompareUI.Add(' ** Missing Table: ' +
 oSourceTable.Name);
 Break;
 end;
 // Looking for the same table.
 if UpperCase(oSourceTable.Name) =
 UpperCase(oDestTable.Name) then
 begin
 lFound := True;
 // Check each column.
 if Assigned(CompareUI) then
 CompareUI.Add(' Column Discrepencies');
 if Assigned(CompareUI) then
 CompareUI.Add(' --------------------');
 lColErr := False;
 for lcv3 := 1 to
 oSourceTable.Columns.Count do begin
 // Test the data type.
 if oSourceTable.Columns.Item(lcv3).Datatype <>
 oDestTable.Columns.Item(lcv3).Datatype then
 begin
 if Assigned(CompareUI) then
 CompareUI.Add(' Datatype: ' +
 oSourceTable.Columns.Item(lcv3).Name +
 oSourceTable.Columns.Item(lcv3).
 DataType + ' ' +
 oDestTable.Columns.Item(lcv3).DataType);
 lColErr := True;
 end;
 // Test the physical data type.
 if oSourceTable.Columns.Item(lcv3).
 PhysicalDatatype <>
 oDestTable.Columns.Item(lcv3).
 PhysicalDatatype then
 begin
 if Assigned(CompareUI) then
 CompareUI.Add(' PhysicalDatatype: ' +
 oSourceTable.Columns.Item(lcv3).Name +

http://www.compass.net
http://www.oop.com
http://msdn.microsoft.com/library/techart/msdn_dmoovrvw.htm
http://msdn.microsoft.com/library/techart/msdn_dmoovrvw.htm
http://www.oop.com
http://www.oop.com

1

Columns & Rows
 oSourceTable.Columns.Item(lcv3).
 PhysicalDatatype + ' ' +
 oDestTable.Columns.Item(lcv3).
 PhysicalDatatype);
 lColErr := True;
 end;
 // Test the AllowNulls property.
 if oSourceTable.Columns.Item(lcv3).AllowNulls<>
 oDestTable.Columns.Item(lcv3).AllowNulls then
 begin
 if Assigned(CompareUI) then
 CompareUI.Add(' AllowNulls: ' +
 oSourceTable.Columns.Item(lcv3).Name +
 IntToStr(ord(Boolean(oSourceTable.
 Columns.Item(lcv3).AllowNulls))) + ' '+
 IntToStr(ord(Boolean(oDestTable.
 Columns.Item(lcv3).AllowNulls))));
 lColErr := True;
 end;
 // Test the Length property.
 if oSourceTable.Columns.Item(lcv3).Length <>
 oDestTable.Columns.Item(lcv3).Length then
 begin
 if Assigned(CompareUI) then
 CompareUI.Add(' Length: ' +
 oSourceTable.Columns.Item(lcv3).Name +
 IntToStr(oSourceTable.Columns.Item(
 lcv3).Length) + ' ' + IntToStr(
 oDestTable.Columns.Item(lcv3).Length));
 lColErr := True;
 end;
 Break;
 end;
 // If no errors, then put a NONE in.
 if not lColErr then
 if Assigned(CompareUI) then
 CompareUI.Add(' NONE');
 end;
 end;
 if not lFound then
 // Update the UI;
 if Assigned(CompareUI) then
 CompareUI.Add(' **Table: ' + oSourceTable.Name +
 ' Not found in destination database.');
 end;
end;

End Listing One
9 July 2000 Delphi Informant Magazine

20 July 2000 Delphi Informant Magazine

Greater Delphi
Palm Handheld Devices / COM

By Ron Loewy

Figure 1: Our sam
Palm Conduits
Part II: Writing a Sample ToDo Application
p

In Part I of this series, we introduced the concept of programming for the Palm handheld
device and the use of conduits, which performs the data synchronization between the Palm

and the PC. We also introduced EHAND Connect, a COM-based product that allows you to
write conduits with every Windows development tool that can create automation objects.
In this half of the series, I’ll demonstrate the use of
EHAND Connect to create a conduit in Delphi by
writing a simple ToDo application that will store
information from the Palm device ToDo appli-
cation to a Paradox database. We will also write
a conduit that synchronizes between the Paradox
database and the Palm device.

About the PC ToDo Application
The goal of this article is to discuss conduit cre-
ation. Therefore, the ToDo application we’re going
to write will be a primitive application that will
simply allow us to create data for synchronization.
A lot of the operations that a well-designed ToDo
application will perform behind the scenes will be
exposed in this application.

For example, the database we will use will have an
IsDeleted field for every row. In a real application,
when the user chooses to delete a row, this field
will be set to True, and the data won’t be displayed
le PC database application.
to the user. The record will remain in the database
until it is synchronized with the Palm device; oth-
erwise, we won’t know that the record (assuming
it exists on the Palm) needs to be removed. In our
application, however, all the records are always dis-
played, including the “deleted” ones that are only
marked as deleted for synchronization purposes.

The ToDo Database
I used the Database Desktop to create a simple,
two-table database (see Figure 1). I later used
the Control Panel BDE Administrator applet to
create a BDE alias called “PALMSAMP” to point
to this database.

The sample tables are included with the source
archive of this article (see end of article for
download details). You can unzip it to a direc-
tory of your choice, and set the alias to point
to that directory. The database includes a Users
table, which has a LastSync field. The database
can be used by many users and we don’t want
to synchronize the ToDo list of one user with
the information of another user. (In reality, the
synchronization code I wrote does update this
table, but it always assumes that all the records
in the Entries table belong to the synchronized
device, and will always synchronize all of them.
In a real-life application, you’ll define the Entries
table as a detail table with the Users table as its
master table.)

The Entries table is the interesting data storage
for our application. It includes the fields that
describe the ToDo information (DueDate, Com-
pleted, Description, and Notes) and three flags:
IsSynced determines if the record was ever syn-
chronized with the Palm device, IsDeleted deter-
mines if the user deleted the record on the PC

Greater Delphi
and it needs to be deleted on the Palm device, and IsModified
determines if the record has been modified on the PC. The
RecordID field is the unique identifier of the record in the data-
base. The value in this field is used to link a record on the PC with
a record on the Palm device.

Synchronization Strategy
When we need to synchronize databases on different devices, we need
to determine a strategy for clash resolution. Consider the case where
the same record is modified on the PC: It’s also modified on the Palm
device before synchronization can be performed. What should our
strategy be when we come to synchronize the databases? Should the
PC record prevail, or should the Palm record prevail?

The situation could be even more complicated. What happens to a
record that was modified on the Palm device, but was deleted on the
PC? Should we remove the record from both devices, or should we
update the record on the PC and “undelete” it?

The truth is that there are no absolute answers. What you decide
to do is the way your application resolves these conflicts. Taking
the first scenario (the record modified on both platforms before
synchronization), we can solve the problem by adding a Modifica-
tionTime field that is updated whenever the record is modified. In
this case, the more recently modified record will prevail. Another
solution (the one I am taking in the sample application) is to opt
for handheld modification over PC modification; if both records
that need to be reconciled have been modified, I prefer the Palm
modification.

In the sample application, I decided to ignore the archive bit that
can be assigned to a Palm record. When this bit is turned on, the
PC needs to store a copy of the record for archival purposes during
synchronization. However, the size of the code that is needed to
illustrate basic synchronization that takes care of essential stuff, like
record addition, modification, and purging, is large enough as it is,
and it seemed reasonable to try and keep the size of the code small
since this is an article, not a book about Palm programming. The
strategy I decided to follow is summarized in the table in Figure 2.

Supporting Cast
The file SyncData.pas includes the definition of the TToDoRecord
class. This class represents data that is stored in memory during the
synchronization process. We will keep two memory databases: one
for the “interesting” PC records, and one for all the records in the
Palm database. Every record in these “memory” databases will be
represented by a TToDoRecord object.

A TToDoRecord object has properties for the information related to the
ToDo database — DueDate, Completed, Description, and
Palm record PC record Operation

Modified Nothing Modify PC Record.
Modified Modified Modify PC Record.
Modified Deleted Modify PC Record and Undelete it.
Modified Does not exist Create a new PC Record.
Does not exist Modified/Not Synced Create a new Palm Record.
Nothing Modified Modify Palm Record.
Deleted Modified Modify Palm Record and Undelete it.
Nothing Deleted Delete Record on both platforms.
Deleted Nothing Delete Record on both platforms.
Deleted Deleted Delete Record on both platforms.
Nothing Nothing Nothing to do.

Figure 2: My synchronization strategy.
Note. It also has a field called Operation that includes
the synchronization operation our conduit decides to
perform on the record. The available options are
opAddPalm, opModifyPalm, opDeletePalm, opAddPC,
opModifyPC, opDeletePC, and opNoOp. The last one
represents a “No Operation” option.

The class also has a RecordID property. This is the
unique key that allows us to match records between
the PC and Palm databases.

The PalmRecord property points to an EHAND Con-
nect Palm Data Record interface and provides access to
21 July 2000 Delphi Informant Magazine
the methods that are available for this record on the Palm. The PCRecNo
property is used to provide a cursor pointer on the PC database for a
record created from entry on the PC. This allows us to position the
cursor in the Paradox table to the specific record, if we need to modify
some of the fields in the record.

The class provides some utility methods, including SetPalmRecord,
which sets the attributes and properties from an EHAND Connect
Palm Data Record interface pointer, and SetPCRecord, which sets these
attributes and properties from the current record of a TTable instance.

Synchronization in Action
The project ToDoSync.dpr was created using Delphi’s ActiveX
Library wizard. It includes the automation object class, named
DIConduit, that hosts our code.

The file, SyncUnit.pas, contains the synchronization code and imple-
ments the strategy we discussed earlier. I created an Automation
object (using Delphi’s Automation Object wizard) and used the
Type Library editor to add the OpenConduit method. This is the
method called by EHAND Connect when the conduit code starts the
synchronization process.

In OpenConduit, we set the variable ConduitObj to point to the
conduit interface passed by EHAND Connect. We call the func-
tion HandleUser, which checks against, and updates, the Users
table. In a real application, the user information would be used
to synchronize information only against the user information, but
for simplicity’s sake, we assume that all the records in the Entries
table will be synchronized. I won’t discuss HandleIUser in this
article, but you can inspect the source to see how the information
is retrieved from the Palm device.

The next call is to the DefineSchema method. This method opens the
ToDoDB database on the Palm device, and defines the schema (data
structure) of the database. The schema on the Palm device consists
of four fields: DueDate, CompletedFlag, Desc, and Note. Notice the
use of field type constants (eDate, eByte, and eString) in the call to the
DefineField method of the conduit interface:

if (ConduitObj.OpenDatabase('ToDoDB') <> 0) then begin
 ConduitObj.Def ineField('DueDate', eDate, '');
 ConduitObj.Def ineField('CompletedFlag', eByte, '');
 ConduitObj.Def ineField('Desc', eString, '');
 ConduitObj.Def ineField('Note', eString, '');
end;

After the schema has been defined, we determine the type of synchro-
nization requested. The options are Do Nothing, Copy from the

Greater Delphi

Figure 3: The data in the Palm ToDo List application
after synchronization.
PC to the Hand Held device, Copy from the Hand Held device
to the PC, or synchronize both. In the sample application, I only
implemented the synchronize both option, because it’s the most
common and most complicated option (the others are sub-sets).

Complete synchronization is performed in the method called
SyncBoth, which we’ll examine in a moment. After synchronization
is finished, the database is closed and an entry of our success is
written to the synchronization log. The synchronization log can be
inspected on the Palm device after the HotSync program finishes the
synchronization process.

SyncBoth is the method that performs the actual data synchroniza-
tion. Let’s take a “grand” view of its operation:

One. The “suspect” records are read from the database into a memory
structure (held in a TStringList named DatabaseRecords) using the
DBToMemory method. Initial suspect operations are assigned to the
memory records, e.g. opModifyPalm, opAddPalm, etc.

Two. All records from the Palm device are read into a memory
structure, held in a TStringList named PalmRecords. The record’s
attributes are inspected, and an initial operation is assigned to
the memory record. At this time, clashes are inspected against the
DatabaseRecords structure, and we determine the operation that
will be taken based on the strategy we discussed previously. If
needed, the DatabaseRecords record object’s operation property is
modified. At the end of this stage, we have all the information we
need to physically perform the synchronization.

Three. The UpdatePalmRecords method is called. It traverses the
22 July 2000 Delphi Informant Magazine
PalmRecords memory structure and, based on the operation property
of every record, deletes the record or updates it on the Palm device
using the SetField and WriteRec methods exposed by the EHAND
Connect interfaces.

Four. The UpdateDBRecords method is called. It traverses the
DatabaseRecords memory structure and performs the physical operations
of updating both the PC and the Palm device as needed. Because we
use the RecNo property of a TTable to position the cursor, we actually
perform three passes on the DatabaseRecords structure. In the first, we
perform the opAddPalm, opDeletePalm, opModifyPalm, and opModifyPC
operations. In the second pass, we perform the opDeletePC operations. In
the third, we add new records to the PC.

Notice that during step Four we call the conduit interface’s
PurgeDeletedRecs method. This method physically deletes records in
the Palm device that have been marked as deleted earlier. Figure 3
shows the Palm ToDo List application after synchronization.

Final Steps
To activate our conduit code, we need to register it with the
HotSync.exe application. After building the project in Delphi and
registering it (select Run | Register ActiveX Server from Delphi, or run
regsvr32.exe from the command line), I used CondCfg.exe, a utility
that can be found in the Bin sub-directory of the EHAND Connect
installation (C:\program files\ehand\ehand connect on my machine).

Using this utility, you need to associate the conduit with an appli-
cation installed on the Palm device. We could, of course, associate
the conduit with the ToDo application, but this would remove the
standard ToDo conduit that ships with the Palm Desktop software.
Because we don’t really want to replace this conduit, and just want
to disable it while we test our code, I chose to associate our conduit
with the Calc application (the Palm application that displays a
calculator), which does not store data in a database and therefore
does not need to synchronize information with a desktop. It is
thus perfect for our sample. Obviously, in the real world, you will
probably synchronize with a custom application you created and
installed on the Palm device, and you will associate the conduit
with this application.

At this point (before adding the reference to our conduit code), if
you use the ToDo application on the Palm device, I would suggest
using HotSync to synchronize your data with the PC. The data we
might scramble playing with the conduit code can then be restored
later from the PC.

Right-click on the HotSync application’s icon in the tray and choose
Custom from the popup menu. Select the To Do List conduit from the
list box and click the Change button. In the Change HotSync Action
dialog box, set the action to Do Nothing and click the OK button. This
will ensure that the records we add, modify, or delete to the Palm
database will not find their way into the PC application and we’ll be
able to restore the real data later.

Activate the CondCfg.exe application mentioned previously and use
the Add button. Set the Creator ID to “calc” (no quotes). This will
associate the conduit with the Calc application. In the Conduit Set-
ting dialog box, point the DLL Name entry to the file EHConnect.dll
in the EHAND Connect installation directory, C:\program files\
ehand\ehand connect\EHConnect.dll by default. In the Class Name
entry, enter the name of the conduit automation object we created —
ToDoSync.DIConduit in our example.

Greater Delphi
You’re now ready to synchronize using the HotSync application. You
can build the sample ToDoDB application that will allow you to
edit records in the Paradox table on the PC. Try to add and modify
entries on this application, or do the same on the Palm device and
synchronize them to see the data transferred between the platforms.

Conclusion
While the official Palm Conduit Development Kit supports only
Visual C++, with a little help from EHAND Connect, every
COM-enabled development tool can be used to create conduits
to exchange and synchronize data between a Palm device and a
Windows desktop.

Colin Chapman believed in small, light-weight race cars, but even he
would have loved a truck (or, being English, a lorry) to ferry his pre-
cious works of art to the Grand Prix circuits, where they dominated
the opposition. Think of the Delphi conduit as the on-ramp to the
truck — the piece that makes the small Palm device a really useful
tool instead of a plaything. ∆

The project files referenced in this article are available on the Delphi
Informant Magazine Complete Works CD located in INFORM\00\
JUL\DI200007RL.

Ron Loewy is a software developer for HyperAct, Inc. He is the lead developer
of eAuthor Help, HyperAct’s HTML Help-authoring tool. For more information
about HyperAct and eAuthor Help, contact HyperAct at (515) 987-2910, or visit
http://www.hyperact.com.
23 July 2000 Delphi Informant Magazine

http://hyperact.com

24 July 2000 Delphi Informant Magazine

DBNavigator
ASP / HTML / Delphi 3-5

By Cary Jensen, Ph.D.
Delphi and ASP
Getting Started with Active Server Pages
In brief, Active Server Pages (ASP) are text files that contain standard HTML commands
that are processed by a Web browser, and scripting commands that are executed on

a Web server. These scripting commands can be written in VBScript, JScript (the Internet
Explorer equivalent of Netscape’s JavaScript), or any other language for which a valid
scripting engine is installed, e.g. Perl and Python. Using these scripting commands,
you can introduce basic programming operations into your HTML, such as performing
conditional execution and expression evaluation, as well as invoking the features of COM
servers installed on the server. In this article, we’ll take a look at using these scripting
commands to achieve the results you want.
When an HTTP request for an ASP document
is received by an ASP-enabled Web server, such
as Microsoft’s Internet Information Server (IIS),
the server processes the scripting commands
within that file. The output generated by the
scripting language is combined with the stan-
dard HTML in the ASP to produce the HTTP
response returned to the Web browser. In other
words, the server doesn’t return the ASP docu-
ment to the browser. Instead, it returns static
HTML, plus the output from the processing
of the scripting commands. In most cases, the
returned data is pure HTML, although it can
potentially contain any valid MIME (Multi-
Purpose Internet Mail Extensions) content type.

There are numerous benefits to using ASP:
§ The user can’t readily access your code. Unlike

with browser-side JavaScript or VBScript, in
which the scripting instructions are delivered
intact to the browser, ASP commands aren’t
sent to the Web browser.

§ ActiveX objects accessed using ASP — when
Microsoft Transaction Server (MTS) isn’t
being used — are loaded into the process
space of the server, which reduces overhead
when compared with CGI (common gate-
way interface) server extensions. An ASP
object can also be processed in a separate
process space, reducing the likelihood that
a crashing ASP object will bring down your
Web server.

§ ActiveX objects used by IIS can be installed
into MTS, providing activation on demand,
transactions, resource sharing, crash protec-
tion, and additional security.
§ ASP code is often easier to write than other
CGI programs, in that it doesn’t require com-
pilation or the installation of a secondary pro-
cessor (although when you create a COM
server designed to be accessed by an ASP, the
COM server requires compilation).

As noted already, ASP can only be used with an
ASP-enabled Web server. Initially, ASP support
was introduced in Microsoft’s Internet Infor-
mation Server (IIS). However, any Windows-
based server can potentially support ASP. This
is crucial in that ASP servers use COM technol-
ogy, which is supported almost exclusively by
the Windows operating system. (Although some
non-Windows implementations of COM exist,
these are quite rare.)

Before continuing, it’s worth mentioning that JSP
(Java Server Pages) is a technology similar to ASP. The
primary difference is that JSP-enabled servers aren’t
limited to Windows-based servers. Any Web server
that runs on a Java 2-supporting operating system
(JDK 1.2) can be a potential JSP-enabled server.

Using ASP Commands
In addition to basic HTML, ASP contains four
types of commands: primary scripting com-
mands, output directives, processing directives,
and include statements.

With the exception of include statements, com-
mands contained within an ASP document are
enclosed within <% %> delimiters. As mentioned
earlier, these commands can consist of VBScript,
JScript, or any other scripting language for which

DBNavigator
a valid scripting engine has been installed on the Web server. The
language used for most of the remainder of this article is VBScript.

Primary scripting commands contain the basic syntactic elements of
the scripting language being used. For example, primary scripting
commands may include control structures, expression evaluation,
function invocation, variable declarations, and so on. HTML com-
mands can be interspersed between primary scripting commands to
control the HTML content that is returned to the Web browser. For
example, consider the following segment:

<%
If Time >= #12:00:00 AM# And Time < #12:00:00 PM# Then
%>
Good Morning!
<% Else %>
Hello!
<% End If %>

Here, the plain HTML text Good Morning! appears between the
<%If%> and the <%Else%> commands. Alternatively, the Write method
of the built-in Response object can be used to write HTML from within
a primary scripting command. The Response object is one of six available
built-in objects you can use in your ASP. Built-in objects are discussed
in greater detail later in this section. The following is an example of ASP
commands that make use of the Response.Write method:

<%
If Time >= #12:00:00 AM# And Time < #12:00:00 PM# Then
 Response.Write "Good Morning!"
Else
 Response.Write "Hello!"
End If
%>

In this example, the entire code segment is a primary scripting com-
mand. The result is that one of two strings is written to the HTML
file being created by the Web server based on the evaluation of the

<%If%> statement. In other words, the result of this segment will
either be Good Morning! or Hello!. None of the other actual text of
the primary scripting command is delivered to the browser.

Output directives. Output directives are a special case of primary
scripting commands. As with the Response.Write technique, an output
directive inserts text into the HTML stream that will be returned to
the Web browser. Output directives use the following syntax:

<%= expression %>

The value of expression can be a variable, constant, formula, property,
method, or function. For example, the following line inserts a string
indicating the current time, based on the internal clock on the Web
server (because the Web server can be at any location in the world, this
isn’t necessarily the same time as in the time zone of the Web browser!):

The current time on this server is: <%=Now%>

Processing directives. Processing directives provide instructions to
the ASP processing engine and typically appear at the beginning of an
ASP page. Processing directives use the following syntax:

<% @ keyword=value%>

The keyword must be a reserved word recognized by the ASP engine
and it must be separated from the @ sign by at least one space. The
25 July 2000 Delphi Informant Magazine
keyword is followed by an equals sign (=) and a value. Furthermore,
multiple keywords can appear in a single processing directive, and no
spaces can appear on either side of the equals sign. The following is
an example of a processing directive that tells the Web server that the
VBScript language is being used (the default):

<% @ LANGUAGE=VBScript %>

When using VBScript or JScript, the ASP processing engine removes
white space. When you need to include a blank space in HTML,
use the HTML non-breaking white space character, see an
HTML reference for additional special characters.

VBScript Comments and Variables
In VBScript, comments can appear within primary scripting com-
mands, with the exception of output commands. Comments are
defined by anything to the right of an apostrophe (with the exception
of the end delimiter):

<%
If Time >= #12:00:00 AM# And Time < #12:00:00 PM# Then
 Response.Write "Good Morning!" ' Write morning greeting.
Else
 Response.Write "Hello!" ' It must be later in the day.
End If
%>

As you can imagine, comment notation depends on the scripting
language. For example, while VBScript uses the apostrophe, JScript
makes use of the // characters to denote a comment, similar to Java,
Delphi, and C++.

Although variables don’t need to be declared in VBScript, they
should be declared for good programming practice. Once declared,
or assigned in those cases in which they aren’t declared, variables are
accessible to the remaining commands in that ASP page. For example,
the following statement declares a variable named UserName, and sets
its value to that of a value passed in the HTTP query string. The
following variable can be used in any expression that appears in any
commands later in this page:

<%
Dim UserName
Set UserName = Response.QueryString("Name")
%>

There are two special classes of variables that are visible to more than
one ASP page. These are Session and Application variables. Session
variables are available to all pages accessed by a particular user within
a session. By comparison, Application variables are shared by all ASP
pages in an ASP application. These variables are stored using the
Session and Application built-in objects, respectfully. These objects
are described in greater detail later in this article.

You access Session and Application variables by passing the name of
the variable to the Session or Application object. For example, the
following code stores the session start time in a Session variable:

<% Session("SessionStart") = Now %>

All pages on the site accessed by a specific user can then read this
value using the following statement:

You began your session at <% = Session("SessionStart") %>

DBNavigator
VBScript doesn’t permit the declaration of constants. Constants are
defined using type libraries.

Include Files
Include files are similar to Delphi’s Web Broker TPageProducer in
that they permit you to insert segments of HTML into your page
at specific points. For example, if you have a segment of HTML
that should appear at the top of every page, you can create it once
and embed it within each ASP page by using the include directive
before any other simple HTML text or commands on the page.

The include statement has the following syntax:

<!--#include VIRTUAL|FILE="dirname/inc.htm"-->

If the keyword VIRTUAL is used, the dirname part is a virtual
directory (defined through server configuration). If FILE is used,
the directory can either be an absolute or a relative directory. For
example, if you have created a virtual directory under IIS named
Chunks, you can use the following include statement to include the
header.htm HTML in your ASP page:

<!--#include VIRTUAL="Chunks/header.htm"-->

In addition to including static HTML, include files can also reference
ASP pages or ASP segments. However, note that ASP segments refer-
enced by include directives are processed on the server before the
referencing ASP page is processed. This processing is unconditional.
That is, all included ASP pages are processed — even those where the
include statement is referenced within an <%IF%> statement — before
the first primary command of the referencing ASP page is processed.

Using Objects
ASP objects are Automation servers, and therefore can be either
in-process servers or out-of-process servers. There are two general
classes of objects that you can use from an ASP: built-in objects
and custom objects.

The Server and Application objects referenced previously are examples
of built-in objects. These objects are available to all ASP pages. These
built-in objects are automatically created for you by the server, and
can be referenced within any primary commands. By comparison, you
must explicitly create custom objects before you can access them. You
create custom objects by calling the CreateObject method of the Server
built-in object, passing to it the PROGID of the registered object. For
example, if you have registered an Automation server with the PROGID
of Project1.Text, you can create an instance of it, and assign this instance
to the variable DelphiASPObj using the following command:

<%

Set DelphiASPObj = Server.CreateObject("Project1.Test")

%>

You can also use the HTML <OBJECT> tag to create an instance of
an object. When doing so, however, you must include the RUNAT
directive with the Server option to ensure that this object runs on the
server, and not on the browser’s machine:

<OBJECT RUNAT=Server ID=DelphiASPObj
 PROGID="Project1.Test"></OBJECT>

Java objects. Rather than using COM objects, you can use Java
objects in your ASP commands, as long as your Web server supports
26 July 2000 Delphi Informant Magazine
Java. The following example demonstrates how to create an instance
of the java.lang.Integer class:

<%
Dim date Set intobj = GetObject("java:java.lang.Integer ")
%>

Once you have a reference to the Java object, you can call its meth-
ods. For example, the following example calls the parseInt method
of the Integer class:

<% = intobj.parseInt(somestring) %>

Although the availability of Java objects within ASP pages provides
you with some flexibility, Java objects typically can’t access the
built-in objects, nor can they be part of an MTS transaction. Con-
sequently, their use is usually reserved for special operations not
normally available through the scripting language of COM objects.

Using methods. You call an object’s methods using dot notation to
invoke the qualified method name. If the method requires one or
more parameters, then follow the method name using the syntax
of your scripting language. For example, to invoke the built-in
Response object’s Write method, you use a statement similar to the
following example:

<% Response.Write "Text to return to the browser" %>

Using properties. You reference an object’s property by using dot
notation to reference the qualified property. You write to the prop-
erty by placing the property reference on the left side of an assign-
ment statement. You read the property by including the qualified
property name in an expression. Because properties in COM make
use of accessor methods, reading and writing properties of ASP
objects results in the execution of the defined read and write meth-
ods, respectively. From these methods, you can invoke custom code,
or even reference both built-in and custom ASP objects.

Built-in objects. ASP pages have access to a number of objects created
automatically by the ASP-enabled server. These objects can be refer-
enced by your server-side VBScript, permitting you to get information
about the environment, as well as to control the behavior of your
ASP. The following built-in objects are available to all ASP pages:
Application, ObjectContext, Request, Response, Server, and Session.

The Application object permits you to store application-wide data.
An ASP application is a set of related ASP pages under a common
directory structure. The application starts the first time a page of the
application is loaded, and shuts down when the server is shut down.

The ObjectContext object is used to start, commit, abort, and com-
plete transactions.

The Request and Response objects permit you to get information about
the HTTP request and to control the HTML response. For example,
the Request object permits you to read query strings, cookies, binary
data, client certificates, and server variables. The Response object, by
comparison, can be used to write cookies, control page caching (affect-
ing caching servers), and write the response, among other operations.

The Server object is used primarily to create new ActiveX or Java
objects. It can also be used to control URL mapping and encoding
and HTML encoding.

DBNavigator
The Session object represents one or more hits on pages in a given
ASP application by the same user. To use a session object, the user’s
browser must be set to accept cookies to be sent back to the same
domain. One of the most powerful aspects of the Session object is that
it permits you to track information as a user navigates from one page
to another within your ASP application.

If you must track sessions without using cookies, you can use Cookie
Munger. Cookie Munger is an IIS filter that executes for every page
request, producing an overall performance penalty as an unwanted
side effect. Cookie Munger will detect whether the browser will accept
cookies. If the browser doesn’t accept cookies, the munger will gen-
erate a session ID for that browser. Furthermore, when a page is
being sent back to a browser that doesn’t accept cookies, Cookie
Munger adds query string information to every URL that references
back to the ASP application. The Microsoft Cookie Munger can be
found in the IIS Resource Kit, and more information is available at
http://msdn.microsoft.com/workshop/server/toolbox/cookie.asp.

Custom ASP objects. Even without custom ASP objects, it’s clear
that ASPs can provide you with the power and flexibility to create
more intelligent Web content. However, one of the more powerful
aspects of ASPs is that you can create custom ActiveX servers for
use with them. Specifically, you can create ActiveX servers that are
invoked by a Web server at run time. Those ActiveX servers can read
information about the HTTP request, as well as execute custom code
to provide the necessary response. ActiveX servers used in this context
are referred to as ASP objects for short.

Since the release of Delphi 3, Delphi has made the creation of COM
servers almost effortless. With Delphi 5, this convenience has been
extended to ASP objects. The Active Server Object Wizard, shown in
Figure 1, appears on the ActiveX page of the New Items dialog box.
Using this wizard, you can create an ASP object that can be registered on
your Web server (in that machine’s Windows registry), as well as a sample
HTML page that can be used to invoke your custom ASP page.

As mentioned earlier in this section, custom ASP objects can be
in-process servers or out-of-process servers. The following example
makes use of in-process ASP objects. These objects can be loaded
in the process space of the Web server, or installed and invoked
from MTS.
27 July 2000 Delphi Informant Magazine

Figure 1: The Active Server Object Wizard is accessible from the
New Items dialog box.
Creating a Custom ASP Example
Use the following steps to create a custom ASP object for use with IIS:
1) Select File | Close All.
2) Select File | New to display the Object Repository. Select the

ActiveX tab, then double-click the ActiveX Library Wizard. This
 wizard creates a new DLL-based project that exports the essential

four functions for in-process COM server activation.
3) Select File | New again. Then, select the ActiveX tab and double-

click the Active Server Object Wizard. Delphi responds by dis-
playing the New Active Server Object dialog box (see Figure 2).

4) At CoClass Name, enter DelphiASP. If you’re using IIS version
3.0 or 4.0, you must set the Active Server Type to Page-level event

methods. If you’re using IIS version 5.0, select Object Context.
Leave Generate a template test script for this object enabled. Click
OK when you’re done.

At this point, creating your ActiveX server object is like creating
any other type of COM server. You use the Type Library editor to
declare methods and properties. From within the implementation
of your methods, you write your code logic. What is somewhat dif-
ferent from other types of COM servers is that the interfaces that
enable ActiveX server objects expose a number of interface refer-
ences that provide you with access to the built-in server objects.
For example, your server inherits a Request property, which gives
you access to the built-in Request object. Similarly, you have access
to the Response property, which you use to invoke methods of the
built-in Response object.

The following steps demonstrate how to implement a method on the
server. This particular example is being kept fairly simple.
1) Using the Type Library editor, add a new method named SayHello.

Don’t define any parameters for this method (see Figure 3).
2) Click the Refresh Implementation button to generate the SayHello

method stub in the DelphiASP CoClass.
3) Implement the DelphiASP.SayHello method. The example in

Figure 4 demonstrates the use of several Response.Write meth-
ods, using the ServerVariables interface, as well as accessing the
Request object.

4) Save the project as DelphiASP.DPR. (Save the CoClass unit
using any name you want. In the ASPDemo project, it’s named
coclassu.pas.)

5) Compile the project, and then select Run | Register ActiveX to
register this ASP object with the Windows registry. (All files and
projects are available for download; see end of article for details.)
Figure 2: The New Active Server Object dialog box.

http://msdn.microsoft.com/workshop/server/toolbox/cookie.asp

DBNavigator
Calling the Custom ASP Object
You now must update the text of the ASP page generated by Delphi.
Originally this page looked like the code shown in Figure 5.

Change the generated code to look like that shown in Figure 6.
28 July 2000 Delphi Informant Magazine

Figure 3: Adding the SayHello method in the Type Library editor.

procedure TDelphiASP.SayHello;
var
 i: Integer;
begin
 with Self.Response do begin
 Write('This is the response '+
 'from the Delphi ASP object. <P>Here is a big ' +
 '<H2><CENTER><I>Hello !!</I></CENTER></H2><P>' +
 'This request has come from a ');
 Write(Request.ServerVariables.Get_Item(
 'HTTP_USER_AGENT'));
 Write(' agent at address ');
 Write(Request.ServerVariables.Get_Item('REMOTE_HOST'));
 Write('.
 Furthermore, the last page you '+
 'visited was (none if blank): ');
 Write(Request.ServerVariables.Get_Item(
 'HTTP_REFERER'));
 Write('<P>The request method was ');
 Write(Request.ServerVariables.Get_Item(
 'REQUEST_METHOD'));
 Write('<P>There were ');
 Write(IntToStr(Request.QueryString.Count));
 Write(' items in the query string.');
 if Request.QueryString.Count <> 0 then
 begin
 Write('<P>The query string is :');
 Write(Request.QueryString);
 end;
 if Request.Form.Count <> 0 then
 begin
 Write('<P>There were ');
 Write(IntToStr(Request.Form.Count));
 Write(' items sent by an HTML FORM.');
 Write('<P>These are ');
 for i := 1 to Request.Form.Count do begin
 Write('
');
 Write(Request.Form.Key[i]);
 Write(' : ');
 Write(Request.Form.Item[i]);
 end;
 end;
 if (Request.QueryString.Count = 0) and
 (Request.Form.Count = 0) then
 Write('<P>There was no data sent with this request.');
 end;
end;

Figure 4: Demonstrating the use of several Response.Write methods.
In this modified ASP page text, the CreateObject call has been updated
to refer to the ProgID of the newly created ASP object. Also, the call
to invoke the SayHello method of this object has been added.

Now save the .asp file to the root directory of your Web server.
Make sure you keep the file extension as .asp. Next, using the
CO (File | Open) selection from your Web browser, type http://
localhost/delphiasp.asp. (This assumes you’re testing this appli-
cation using a local Web server. If you’re using a Web server on
another machine, replace localhost with either the domain name,
the machine name, or the IP address of your Web server.) After a
moment, the page should load. Figure 7 shows what this page looks
like in Netscape Communicator.
<HTML>
<BODY>
<TITLE> Testing Delphi ASP </TITLE>
<CENTER>
<H3> You should see the results of your Delphi Active
 Server method below </H3>
</CENTER>
<HR>
<%
Set DelphiASPObj=Server.CreateObject("Project1.DelphiASP")
DelphiASPObj.{ Insert Method name here. }
%>
<HR>
</BODY>
</HTML>

Figure 5: Original ASP page.

<HTML>
<BODY>
<TITLE> Testing Delphi ASP </TITLE>
<CENTER>
<H3> You should see the results of your Delphi Active
 Server method below </H3>
</CENTER>
<HR>
<% Set DelphiASPObj = Server.CreateObject(
 "DelphiASP.DelphiASP") DelphiASPObj.SayHello %>
<HR>
</BODY>
</HTML>

Figure 6: Modified ASP page.

Figure 7: The updated ASP page as seen in Netscape
Communicator.

DBNavigator

<HTML>
<TITLE>Demonstrating an HTML form calling an ASP</TITLE>
<BODY>
<H2>Enter some data into this HTML form</h2>
<FORM Method=GET Name=Form Action=delphiasp.asp>

First Name :<INPUT TYPE="text" NAME="firstname">

Last Name :<INPUT TYPE="text" NAME="lastname">

Age :<INPUT TYPE="text" NAME="age">
<INPUT TYPE="hidden" NAME="userstatus" VALUE= "new">
<P><INPUT TYPE="submit" VALUE="Enter">
</FORM>
</BODY>
</HTML>

Figure 9: An HTML form calling an ASP page.

Figure 8: The HTML generated by ASP.

Figure 10: The HTML text from Figure 9 displayed in a browser.

Figure 11: The resulting HTML after invoking your ASP object.

Figure 12: HTML opting for the GET action rather than the
POST action.
Because this page was displayed using the Open Page feature, there
was no HTTP referrer. However, if you loaded this page by clicking
an anchor tag link (<A>), or submitting an HTML form with either
a GET or POST action, the URL of that linking page would be
displayed following the “last page you visited” text.

If you now select View | Page Source, you will see the HTML gener-
ated by the ASP (see Figure 8). Notice that what you see here is plain
HTML. None of the ASP commands are visible, because the server
replaced them with the HTML text generated by the ASP object.
29 July 2000 Delphi Informant Magazine
Calling Your ASP from an HTML Form
As mentioned earlier, if you had displayed your ASP-generated HTML
by clicking on a link, the HTTP_REFERER server variable would
contain the URL of the linking page. Likewise, if this link was gener-
ated by either a GET or POST action from an HTML form, the ASP
would display the data sent by the form.

This effect is demonstrated using the HTML page defined by the text
in Figure 9, which is found in the TESTASP.HTM file located along
with the sample code for this article.

If you save this page to the same directory in which you have placed
the ASP page, then load it into your browser and enter data into the
text input fields, your browser will look something like that shown
in Figure 10.

If you click the Enter button on the HTML form to invoke your ASP
object, the resulting HTML downloaded to your browser may look
similar to that shown in Figure 11.

Alternatively, if your HTML form used the GET action (the default)
instead of POST, the resulting page may look something like that
shown in Figure 12.

Conclusion
In this article, we’ve seen a number of different ways you can benefit
from the use of ASP in Web development. And when you add
ASP’s ability to utilize Delphi’s COM capabilities, Web development
becomes all that much more robust. ∆

The files referenced in this article are available on the Delphi
Informant Magazine Complete Works CD located in INFORM\00\
JUL\DI200007CJ.

Cary Jensen is president of Jensen Data Systems, Inc., a Houston-based database
development company. He is co-author of 17 books, including Oracle JDeveloper [Oracle
Press, 1998], JBuilder Essentials [Osborne/McGraw-Hill, 1998], and Delphi in Depth
[Osborne/McGraw-Hill, 1996]. He is a Contributing Editor of Delphi Informant Maga-
zine, and an internationally respected trainer of Delphi and Java. For more information,
visit http://www.jensendatasystems.com, or e-mail Cary at cjensen@compuserve.com.

http://www.jensendatasystems.com

30 July 2000 Delphi Informant Magazine

New & Used

By Bill Todd
Wise for Windows Installer 2.0
The Future of Windows Installation
Windows Installer is Microsoft’s new technology for controlling the installation of
software and operating system updates on systems running Windows 2000 and

Windows Millennium. Adding installation support to the operating system is part of
Microsoft’s effort to improve stability. By gaining control of the installation process,
Microsoft can ensure that installing application software cannot damage the operating
system and, hopefully, other applications. Wise Solutions’ Wise for Windows Installer
2.0 lets you quickly and easily build installations that use Windows Installer.
Windows Installer brings a number of new con-
cepts and terms to the world of software installa-
tion. If you are already familiar with Windows
Installer, you can skip this section. In introduc-
ing a new installation technology for its new
family of operating systems, Microsoft did not
want to force developers to create one installa-
tion using traditional technology for Windows
95, 98, and NT 4, and another using Windows
Installer for Windows 2000 and Millennium. To
solve this problem, Microsoft has created ver-
sions of Windows Installer that will run on Win-
dows 95, 98, and NT 4.

To install software using Windows Installer, you
must create a special relational database that con-
tains all of the information Windows Installer
needs to install your software. The database is con-
tained in a single file with an .msi extension. Wise
for Windows Installer lets you build this database.

Learning to use Wise for Windows Installer, or
any other Windows Installer tool, is much easier
if you have a basic understanding of Windows
Installer concepts and terminology. You will find
the “Roadmap to Windows Installer Documenta-
tion” at http://msdn.microsoft.com/library/psdk/
msi/leglivt_0002.htm. From this page, you can
access all of the information Microsoft has pub-
lished about Windows Installer. You may also
want to download the Windows Installer SDK
(about 6MB) from http://download.microsoft.
com/msdownload/platformsdk/i386/
InstallerSamples/IntelSDK.msi. Even if you do
not plan to use the SDK to develop your own
installation software or interact with the Win-
dows Installer through COM, the SDK Help
file is a valuable resource for learning about Win-
dows Installer.

Windows Installer offers a host of new features,
such as self-healing applications. When you launch
a self-healing application, it will automatically
detect missing or damaged files, and automatically
reinstall the missing files. An application can ask
Windows Installer if a specific application feature
is installed, and alter its appearance and behavior
based on the answer. In large organizations, admin-
istrators can advertise applications that are available
to users. These applications will appear on the
user’s Start menu, just as if they were installed,
and Windows Installer will automatically install
the application the first time the user opens it.

Windows Installer also lets you install features of your
application on demand. If a user chooses a feature
that isn’t installed, one of two things will happen,
depending on whether the application was installed
from removable media or a network location. If the
original installation was from a network location that

http://download.microsoft.com/msdownload/platformsdk/i386/InstallerSamples/IntelSDK.msi
http://download.microsoft.com/msdownload/platformsdk/i386/InstallerSamples/IntelSDK.msi
http://msdn.microsoft.com/library/psdk/msi/leglivt_0002.htm
http://msdn.microsoft.com/library/psdk/msi/leglivt_0002.htm

31 July 2000 Delphi Informant Magazine

Figure 1: The Wise for Windows Installer 2.0 installation expert.

Figure 2: A hierarchy of features.

Figure 3: Adding files to your installation.

New & Used
is still accessible, Windows Installer will automatically install
the requested feature. If the original installation was from
removable media, Windows Installer will prompt the user
to insert the media, then install the feature.

Using the Installation Expert
If you have used version 7 or higher of any of the
Wise installation products, Wise for Windows Installer
will look very familiar. When you start Wise for Win-
dows Installer, you will see the installation expert screen,
shown in Figure 1.

The installation expert separates the process of creating an
installation into six steps, most of which are divided into
one or more subtasks. You can move from step to step by
clicking the step buttons at the top of the screen. You can
also click a task in any button at any time to jump directly
to that task. To move through the process in order, use the
Next and Back buttons at the bottom right of the screen.

Windows Installer installs products. A product may
consist of one or more features. A typical example
might be an accounting package that is separated into
features, such as general ledger, accounts receivable,
accounts payable, payroll, and so on. You must have
at least one feature, so Wise for Windows Installer
automatically creates a feature named Complete. You
cannot delete Complete until you have added at least
one other feature. Assume you are going to install
an accounting system, and that all of the accounting
modules depend on a module named Accounting
Manager that must always be installed.

To create this structure, click Features in step 1 of the
installation expert, then click Installation Features in the
tree view. Click the Add button to display the Feature
Details dialog box, and enter Accounting Manager
as the name. Next, select Complete in the tree view,
and click the Delete button to remove it. Because the
Accounting Manager must be installed for any of the
other modules to work, you can make the other modules
dependent on the Accounting Manager by adding them
under the Accounting Manager feature. Just click on
Accounting Manager in the tree view, click the Add button,
and enter the name of the new feature. Repeat this for
each feature you want to add until you have the structure
shown in Figure 2. By making features dependent on
each other, you can ensure that users always install every-
thing necessary to make the features they select work.

You can organize features to provide uses with the option
of doing a Typical, Complete, or Custom installation,
although the mechanism for doing this was not immedi-
ately obvious. You must set the Level property to Custom in
the Feature Details dialog box, then set the Custom Value
to three or less to include the feature in a typical install, or
1,000 or less to include the feature in a complete install.
Wise plans to improve this process in a future version.

Once you’ve defined your features, you must define the files
that must be installed for each feature. Choose Files in step 1
to display the file selection screen, shown in Figure 3. When
the Files display appears, the Features drop-down list, just

Figure 4: The Release Settings dialog box.

New & Used
below the buttons for steps 5 and 6, is enabled. All of the files and folders
you add to your installation apply to the selected feature; that is, they will
be installed when that feature is installed.

The lower-left pane in Figure 3 shows the directory structure on
the target computer. To add a new subdirectory, select its parent in
the directory tree and click the New Folder button. The upper-left
pane shows the directory structure on your computer. To add files
to a folder, locate the files on your computer, select them, and
click the Add File button to add them to the selected folder in the
destination computer pane.

If you need to add an entire directory or directory structure, select
the parent directory on the destination computer, select the directory
you want to add to the installation on your computer, and click the
Add Wildcards button. You can specify both include and exclude filters
to include all files that match the template you enter, or exclude files
that match a template you define. For example, you could set the
include filter to *.EXE;*.DLL;*.OCX to include all of the executable,
DLL, and ActiveX control files in the directory. You can also include
subdirectories, and tell Wise for Windows Installer to automatically
update the installation each time it’s compiled to reflect the files
currently in the source directory.

The last option in step 1 is Merge Modules. A merge module is a
pre-compiled installation designed to allow third parties to give you
a way to install their products with your own. Hopefully by the time
you read this there will be available a merge module for the BDE.
To add a new merge module to the feature you have selected, click
the Add New button to display the Add Merge Module Wizard. You
can choose a merge module from the list of modules that comes with
Wise for Windows Installer, or click the Browse button to locate a
module on your hard disk. If the feature you are working with needs
a merge module that you’ve already added to another feature, click
the Add Existing button and choose the module you need.

Moving to step 2 gives you options to install icons; add, delete, or
change registry settings; create, delete, or change .ini file settings;
install Windows services; or add ODBC drivers or data sources.
These options are almost identical to the corresponding options in
Wise InstallMaster 8.0, another installation product from Wise Solu-
tions. The only difference is that you set each of these options for
each feature in your installation.

Step 3 lets you check the user’s system configuration for a minimum
version of Windows or Windows NT, a minimum screen resolution,
32 July 2000 Delphi Informant Magazine
and a minimum color depth. If the configuration on the destination
computer doesn’t meet the minimum requirements, the warning mes-
sage you enter will be displayed.

Step 4 consists of a single choice, Dialogs. Here, you set which dialog
boxes will be displayed when a user runs your installation. If you
choose to include the License or Read Me dialog boxes, you can enter
the text of your license agreement or read me file in .rtf format, or
import the text from an existing .rtf file.

In step 5, you define the releases you want to build. A release is
some combination of features, media, EXE options, and languages.
By creating multiple releases, you can have a single installation that
creates your diskette release and your CD-ROM release for both the
standard and professional versions of your product in each different
language that you need.

There must be at least one release, so Wise for Windows Installer
automatically creates one, named Default. You can click the Details
button to change the name or other properties of the Default release,
and click the Add button to add a new release. Figure 4 shows the
Release Settings dialog box used to add or edit a release.

The key setting in this dialog box is EXE Options. If you know the
destination computer is running Windows 2000, or that it already has
Windows Installer installed, you can safely choose the Do not create

an EXE file option. In this case, only the MSI database file required by
Windows Installer will be created when you compile your installation.
If the target computer is running Windows 95, 98, or NT 4, and
you cannot be sure that Windows Installer has already been installed,
you will want to choose one of the options that creates an installation
EXE. When you create an installation EXE, launching the EXE on
the destination computer will first install Windows Installer, then use
Windows Installer to install your application. Creating an EXE adds
about three megabytes to the size of your installation.

There are two EXE options. The first is Single File Executable, and is
suitable for a single file installation that will fit on a CD-ROM, or will be
downloaded or installed from a network. If you need to create installation
diskettes or CDs, choose Executable That Launches External MSI.

Moving to the Build page lets you set the properties, summary
items, and features to be included in the selected release. Properties
are variables supported by Windows Installer, such as ProductName,
ProductVersion, and DiskPrompt. If you want to know the purpose
and legal values for all of the property variables, you will need
the Windows Installer SDK Help file or other Windows Installer
documentation. Summary information consists of information that
can be displayed by right-clicking the MSI file. Examples are Author,
Comments, Keywords, and Minimum Installer Version.

The Build page also shows the feature tree with a checkbox next to
each feature. Simply check the features you want included in this
release. The Media page, in step 5, allows you to define the media
settings for the selected release. You can opt for a single installation
file with all installation files compressed into the MSI database, or
you can choose to have files compressed into CAB files outside the
MSI. This is the option you must choose if your installation will span
multiple disks. You can use any type of media for your installation by
setting the media size and the cluster size.

If your installation will span multiple disks, you must create and
enter the path to a subdirectory to hold the contents of each disk.

New & Used
Because the installation will consist of the MSI file and multiple CAB
files, each diskette may hold more than one file. Using subdirectories
for each diskette is the only way to keep the files organized by the
diskette on which they belong. The final option in step 5 is to choose
whether you want the installation to run in French, Italian, German,
Portuguese, or Spanish, instead of English.

The sixth — and final — step in creating your installation starts by
prompting you for project information. The most important item
on this page is the Product Code. The Product Code is a GUID
used by Windows Installer to determine if this product is already
installed on the destination computer. This code must be different
for different languages and versions. The Summary page provides
another opportunity to enter the summary information described
earlier in step 5. The Upgrades page allows you to identify features
of an existing installation to remove as part of this installation.
The final three options are Windows 2000, Status MIF, and Code
Signing. The Windows 2000 page lets you configure the options
available to the user in the enhanced Add/Remove Programs dialog
box in Windows 2000. On the Status MIF page, you can configure
your installation to be run under Microsoft Systems Management
Server. The Code Signing page allows you to create a code-signed
single file installation for Internet distribution.
igure 5: The Setup Editor.

 The six wizards in Wise for Windows Installer.

Description

 2000 This wizard scans your installation to see if it meets Microsoft’s
on requirements for a Windows 2000 installation. If it doesn’t, error

messages identify the areas of non-compliance.
MS or This handy wizard lets you import a Microsoft Systems Management
allation Server installation script or a Wise Installation System installation

script, and converts it to run in Windows Installer.
ication This wizard lets you run your application while Wise for Windows and
r Windows Installer watches to see which files are loaded, and uses
iles this information to build an installation.
B Project Use this wizard to import a Visual Basic 5.0 or 6.0 project file and

create an installation.
pture This wizard examines your system before and after you install an

application, and builds an installation based on the changes.
zard This wizard allows you to build an installation that will update an

existing installation on a user’s computer.
Using the Setup Editor
The Setup Editor, shown in Figure 5, provides a
completely different view of your installation, as well
as the ability to edit the Windows Installer database
tables directly.

The Setup Editor screen is divided into three panes.
The left pane contains six tabs that correspond to the
types of information you can work with. A different
tree view appears for each tab. The upper-right pane
displays the detailed values for the selected item in the
left pane. For example, if you select the Product tab,
the left pane contains Launch Conditions, Properties, and
Summary. If you click Properties, all of the properties
and their values appear in the upper-right pane. The
lower-right pane contains help about the selected item
in the left pane.

Properties and Summary information have already
been described. Launch Conditions lets you create
conditions that must be true for the installation
to run. For example, you could require
that the user be logged on as Adminis-
trator to install your application. Wise
for Windows Installer tries to make cre-
ating launch conditions easy by pro-
viding a Condition Builder. The Condi-
tion Builder lets you build conditional
expressions by making point-and-click
choices from lists.

The Features and Dialogs tabs let you
define your features and control which
dialog boxes are displayed during instal-
lation. Using the dialog editor you can
create your own custom dialog boxes, or
customize any of the built-in dialog boxes.
The Actions tab lets you edit existing
actions or add custom actions. While it’s

F

Figure 6:

Wizard

Windows
Verificati

Import S
Wise Inst

Run Appl
Watch fo
Loaded F
Import V

Setup Ca

Patch Wi

33 July 2000 Delphi Informant Magazine
unlikely you will need to change any existing actions, there are times
when you will want to add custom actions. Custom actions let you
run an EXE or call DLL functions as part of your installation. You
can even run VBScript or JScript files. The Tables tab lets you edit
the Windows Installer database tables directly, and is for those who
are intimately familiar with the Windows Installer SDK.

Wizards
Wise for Windows Installer includes six wizards to guide you
through various tasks. The wizards are described in Figure 6.

Documentation
Wise for Windows Installer comes with a 132-page Getting Started
Guide that provides a great introduction to using the product. The
description of each feature begins with an overview and continues
with step-by-step instructions. If you’ve had no prior exposure to
Windows Installer, you will find a few places in the manual where
you will be scratching your head trying to understand some of the
terms and concepts. To avoid this, download the Windows Installer
SDK and read the introductory sections in the Help file, or visit the
Windows Installer Web site and read the introductory documenta-
tion there. An extensive online Help file gives you context-sensitive
help in both the Installation Expert and the Setup Editor.

New & Used
Conclusion
Windows Installer is a giant step forward in making software
installations safe, and Wise for Windows Installer is the perfect
tool to let you take advantage of this new technology. The installa-
tion expert will make anyone who has used Wise 7 or 8 feel right
at home, and help new users build their installations with ease.
The ability to create installation executables that will automati-
cally install Windows Installer on any machine lets you switch
to Windows Installer now for all of your installations. If you’ve
been using Wise products, the import wizard makes the move to
Windows Installer very easy. Again, Wise Solutions has done a
superb job of providing both ease and power in a single product.
The Setup Editor provides a fast, intuitive interface that will take
you all the way to the lowest level of building an installation:
editing the Windows Installer tables directly. This is the future of
Windows software installation. ∆

Bill Todd is president of The Database Group, Inc., a database consulting and
development firm based near Phoenix. He is co-author of four database program-
ming books, author of over 60 articles, a Contributing Editor of Delphi Informant
Magazine, and a member of Team Borland, providing technical support on the
Borland Internet newsgroups. He is a frequent speaker at Borland Developer
Conferences in the US and Europe. Bill is also a nationally known trainer and has
taught Paradox and Delphi programming classes across the country and overseas.
He was an instructor on the 1995, 1996, and 1997 Borland/Softbite Delphi World
Tours. He can be reached at bill@dbginc.com.

Windows Installer is a giant step forward in making software
installations safe, and Wise for Windows Installer is the perfect
tool to let you take advantage of this new technology. The installa-
tion expert will make anyone who has used Wise 7 or 8 feel right at
home, and help new users build their installations with ease. This is
the future of Windows software installation.

Wise Solutions, Inc.
5880 N. Canton Center Rd., Suite 450
Canton, MI 48187

Phone: (800) 554-8565
Web Site: http://www.wisesolutions.com
Price: US$795
34 July 2000 Delphi Informant Magazine

http://www.wisesolutions.com

TextFile
Delphi 5 Developer’s Guide

Since Delphi first appeared, two books have
competed for the role as the top general
Delphi book. One of them is Marco Cantù’s
Mastering Delphi; the other is Delphi 5 Devel-
oper’s Guide by Steve Teixeira and Xavier
Pacheco, which I recently had the pleasure
of reading.

In previous reviews, I’ve praised earlier edi-
tions (particularly the Delphi 4 version),
pointing out the expertise of Teixeira and
Pacheco: Both worked for Inprise/Borland in
the early Delphi days and are able to bring
the insightful perspective of an “insider” to
bear upon this work; at the same time, both
are now active as independent Delphi devel-
opers, which gives them the practical experi-
ence to address many real-world issues.

All of the qualities I praised in the previous
edition are present in Delphi 5 Developer’s
Guide, including the wealth of valuable tips.
The organization of this newest edition
of Developer’s Guide is very similar to the
Delphi 4 edition, and it has grown consid-
erably in length to well over 1,500 pages
— not counting the additional 500 pages
on the CD-ROM. This is truly a Delphi
encyclopedia!

The book is divided into five parts. Part
1, “Essentials for Rapid Development,” pro-
vides an introduction to Windows program-
ming using Delphi 5. Part 2 covers a plethora
of “Advanced Techniques,” most of which
are essential to successful development. Part
3, “Component-Based Development,” intro-
duces the Visual Component Library. Part
4 provides an introduction to database pro-
gramming in Delphi. And finally, Part 5
explores database programming in more
detail, getting into client/server issues and
some of the new technologies available in
various versions of Delphi.

In last year’s edition, I especially appreciated
the chapter on Object Pascal. Thankfully,
the authors removed nothing, but rather
made some subtle changes that made the
material even more accessible, especially for
35 July 2000 Delphi Informant Magazine
developers moving to Delphi from Visual
Basic, C++, or another language. Many of
you will recall the numerous extensions
to the Object Pascal language in Delphi
4, such as dynamic arrays and function
overloading. That entire discussion remains
in this volume. Chapter 4, “Application
Frameworks and Design Concepts,” is a
favorite of mine as an excellent introduction
to good programming practice.

Part 2, “Advanced Techniques,” includes all
the topics covered previously: graphics pro-
gramming, printing, multimedia program-
ming, working with files, and MDI appli-
cations. I still consider the chapters on work-
ing with dynamic link libraries and multi-
threading to be among the best I’ve seen.
Chapter 13, “Hard-Core Techniques,” and
Chapter 14, “Snooping System Informa-
tion,” are must-reads for the intermediate-
level developer who aspires to enter the ranks
of advanced developers. One of the delight-
ful topics in Chapter 13 is using the built-in
assembler. The authors explain the tech-
niques involved, and give excellent advice on
when to use assembler and when not to. Six
of the 12 chapters in Part 2 are presented in
Adobe Acrobat format on the CD-ROM that
accompanies the book.

Part 3 begins with an overview of the Visual
Component Library (VCL) and contains an
expanded discussion of Run-time Type Infor-
mation (RTTI). It discusses many compo-
nent creation topics, including writing com-
ponent editors, working with packages, and
using the TCollection class in building a
component. Of course, the new Delphi 5
feature Property Categories is included. If
you’re interested in working with OLE,
COM, or ActiveX, you should find Chapter
23, “COM-Based Technologies,” to be an
excellent introduction — especially with its
extended treatment. This section ends with a
great chapter on CORBA development.

Part 4 provides a thorough introduction to
database programming, covering the essen-
tial Table, Query, and StoredProc compo-
nents. It also includes a discussion of client/-
server programming and Internet database
issues, as well as chapters on WebBroker
(written by Nick Hodges), and MIDAS
development (written by Dan Miser). Even
more than before, I consider this to be one
of the very best introductions to Delphi
database development in a general Delphi
work. With Part 5, “Rapid Database Appli-
cation Development,” the excursion into
the realm of Delphi database development
continues. Here, the authors provide a
solid model of building client/server and
desktop applications.

My recommendation? If you don’t own this
book, buy it! The coverage is comprehensive,
the writing style is easy to follow, and the
examples have many practical applications.
This is a Delphi encyclopedia that deserves a
place on every developer’s bookshelf.

— Alan C. Moore Ph.D.

Delphi 5 Developer’s Guide by Steve Teixeira
and Xavier Pacheco, SAMS Publishing, 201
W. 103rd St., Indianapolis, IN 46290,
http://www.samspublishing.com.

ISBN: 0-672-31781-8
Price: US$59.99 (1,556 pages, CD-ROM)

http://www.samspublishing.com

Best Practices
Directions / Commentary
Be Resourceful
If you routinely (no pun intended) use the keyword resourcestring in your programs, read no further. This
article would merely be “preaching to the choir.” But for those of you who are asking: “What in the Dickens is

resourcestring?” read on.
In the “olden” days of Delphi programming (prior to version 4),
there were basically two ways of using strings in your pro-
grams. You could either embed them into the source code using
string literals:

MessageDlg(
 'Leave your stinkin' mitts off that button, fool!',
 mtError, [mbOK], 0);

Or, you could create a text file with an .RC extension, such as:

STRINGTABLE DISCARDABLE
{
 1 "Dialog Expert"
 2 "Dialog Expert from demonstration Expert DLL."
 3 "Application Expert"
 4 "Application Expert from demonstration Expert DLL"
 5 "&Create"
 6 "&Next"
 7 "An application name is required!"
 8 "The application name is not a valid identi ier."
 9 "The path entered does not exist."
 10 MAIN.PAS"
 11 "MAIN.DFM"
 12 "MAIN.TXT"
 ...
 // Variable names.
 20 "StatusLine"
 ...
}

Then all you had to do was compile it into a resource file, add
it to a Delphi project or unit, compile it using the command-line
tool Brcc32.exe, and then programmatically extract the strings in the
appropriate places in your code using the LoadStr function. That
may have seemed a bit too much of a bother, so you may have stuck
with the tried and true — and now tired — old way of introducing
string literals ad infinitum into your source code.

The resourcestring keyword has come to the rescue. It gives us the
best of both worlds: the simplicity (almost) of string literals, and the
convenience of storing all strings in a central location. Also, using
resourcestring provides better memory management, because the
strings in the resourcestring section are saved as resources associated
with your application.

f

36 July 2000 Delphi Informant Magazine
To take the plunge into the brave new world of using the resourcestring
keyword, simply add a unit to your project, name it ResStrngs (or
whatever), and then add any string literals (especially those the user
would see — contents of string lists, feedback, error messages, etc.) in
the interface section of the unit, like this:

unit ResStrngs;

interface

resourcestring
 // Famous military personalities.
 SGeneralElectric = 'General Electric';
 SGeneralMills = 'General Mills';
 SGeneralUsage = 'General Usage';
 SGeneralHospital = 'General Hospital';
 SGeneralLedger = 'General Ledger';
 SGeneralProtectionFault = 'General Protection Fault';
 SGeneralSQLError = 'General SQL Error';
 SGeneralLeeSpeaking = 'General Lee Speaking';
 SCorporalPunishment = 'Corporal Punishment';
 SSgtFury = 'Sgt. Fury';
 SSgtCarter = 'Sgt. Carter';
 SSgtSchultz = 'Sgt. Schultz';
 SSargentShriver = 'Sargent Shriver';
 SCaptKangaroo = 'Capt. Kangaroo';
 SCaptUnderpants = 'Capt. Underpants';
 SColonelKlink = 'Colonel Klink';
 SPrivateBenjamin = 'Private Benjamin';
 SPrivateProperty = 'Private Property';
 SLeftenantDan = 'Leftenant Dan';
 SMutineerChristian = 'Mutineer Christian';
 SAtlantaHawks = 'Atlanta Hawks';
 // Kindly reminders.
 SDontSleepInTheSubwayDarlin =
 'Don't sleep in the subway darlin'';
 // Additional silly strings left as a reader exercise.

implementation

end.

Add this unit to the implementation uses clause of any unit that
refers to any of its strings. Then access them in this way:

if ItIsPetulasVirtualHusband and HeIsLate then
 MessageDlg(SDontSleepInTheSubwayDarlin,
 mtInformation, [mbOK], 0);

Best Practices
For an example of how Borland/Inprise/Corel (will they be giving
away Bic lighters at the next conference?) uses resource strings, see
consts.pas, dbconsts.pas, etc. in ..\source\vcl.

It’s also beneficial to place your strings in a resourcestring section
because programmers are often not the best people to write feedback
and error messages that will be seen by users. They tend to be either
too technical, “An unexpected error occurred in module xyz while
attempting to spawn a thread;” not informative enough, “Post the
changes before proceeding;” and/or a little testy, “Error! You can’t
[whatever] until you [whatever].”

Separating the message strings to a discrete file makes it easier to hand
them over to someone with the skills necessary to write user messages
(consulting with the programmers as to what exactly each message is
meant to convey, of course). If you don’t want non-programmers muck-
ing about in your .pas file directly, you can copy and paste the existing
resource strings to a text file and then, after they’ve finished polishing
your prose, copy their changes over the resource string constants.

Last, but not least, it is far easier to internationalize (genericize)
and then localize (specificize) your applications when the strings
the user will see are collected in one place. With Delphi’s ITE
(Integrated Translation Environment), the process of internation-
alizing and then localizing your application’s strings is semi-
37 July 2000 Delphi Informant Magazine
automated. Using the ITE, you create a separate resource .dll for
each target language. If you deploy multiple .dlls, the correct one
is automatically loaded according to the locale of the computer
on which your program runs.

The primary tools in the ITE are the Resource DLL Wizard

(File | New | Resource DLL Wizard) and the Translation Manager,
where translations can be entered. See “Integrated Translation
Environment” in Delphi Help for the specifics.

Besides the ITE included with Delphi, there are third-party offerings
relative to internationalization and subsequent localization of Delphi
applications. I prefer to use something that comes “in the box.” As
long as it works well, of course, as the ITE seems to. ∆

— Clay Shannon

Clay Shannon is a Delphi developer for eMake, Inc. in Post Falls, ID.
Having visited 49 states (all but Hawaii) and lived in seven, he and his
family have finally settled in northern Idaho, near beautiful Lake Coeur
d’Alene. The only spuds he has seen in Idaho have been in the grocery, and
most of those are from Oregon and Washington. Clay has been working
(almost) exclusively with Delphi since the release of version 1, and is the
author of Developer’s Guide to Delphi Troubleshooting (Wordware,
1999). You can reach him at BClayShannon@aol.com.

File | New
Directions / Commentary
An Interview with Robert A. DelRossi
Robert A. DelRossi is president of TurboPower Software Co., one of the oldest and most successful third-party
producers of Delphi tools. In the most recent Delphi Informant Magazine Readers Choice Awards (published in the

April, 2000 issue), TurboPower scored big — even bigger than last year. In 1999, TurboPower won four awards: Async
Professional won the Best Connectivity Tool, Memory Sleuth won Best Utility, Orpheus 3 won Best VCL, and SysTools won
Best Add-in Library. This year, TurboPower came in first place in five categories and placed second in two others. Memory
Sleuth’s new incarnation, Sleuth QA Suite, won the award for Best Testing/Debugging Tool, with each of the other
three 1999 winners repeating. Abbrevia won the award for Best VCL Component, and two other products — FlashFiler
and LockBox — came in second in their respective categories. Especially remarkable was Delphi Informant Magazine’s
decision to give a new award this year, Company of the Year, won by — you guessed it — TurboPower. You can find more
information about TurboPower products at its Web site, http://www.turbopower.com.
.
DelRossi has not always been the president of this company. He
began many years ago as a TurboPower customer. After he joined
the company as its first marketing director, he became vice president,
and, finally, its third president.

DI: You’ve had a varied and impressive career at TurboPower. Could
you elaborate a bit more about your experiences at TurboPower?
What advice do you have for the developer who aspires to embark
upon a similar career path?

DelRossi: For starters, TurboPower is a great place
to work. That’s always been the case, and our man-
agement team has dedicated itself to keeping it that
way. Many companies lose the positive corporate
culture they start with, especially as they grow. At
TurboPower we regularly review not just how well
the products are doing, but also how the staff is
doing, and we make adjustments to meet the chal-
lenges of a growing company. Good communication
among team members — the engineers and our
terrific operations group — is a key to our success.

For me personally, and this is especially true having
come from a different kind of business, I’ve learned that
managing highly intelligent people requires a certain amount of flex-
ibility. Software development is still not 100 percent science. There’s a
large dose of art involved too. Managing risk, practicing sound business
fundamentals, and applying proven project management strategies is a
big part of successful software company management, I believe.

DI: What do you feel was your biggest challenge as a developer;
as a manager?

DelRossi: As a developer, keeping up with the incredible pace of
change in our industry is the biggest challenge. For most of us, the
older you get, the harder it seems to keep up with the amazing degree
of change. That’s why TurboPower is successful, I think. We make
it easier to get the latest technology advances into your programs
without having to learn everything about them first.

Without question, the biggest challenge any software executive faces
today is finding and retaining qualified engineers. When I first

Robert A
38 July 2000 Delphi Informant Magazine
became president I imagined that the biggest challenges would be
financial, but it’s really finding the right people to maintain your
company’s growth, and then keeping them engaged.

DI: You must be gratified with the great success that TurboPower
has enjoyed in recent years, particularly the unprecedented show-
ing in this year’s Delphi Informant Magazine Readers Choice
Awards. To what do you attribute this success? Is there one factor
— the quality of the software, the documentation, the support —

that stands above all the others as the key to their
popularity with users?

DelRossi: You probably won’t be surprised to hear
me say that I believe our success comes from several
factors. I think our customers see us as providing
more than just good code. When they buy one of
our products, they’re really making us a partner in
their projects. If they succeed, we succeed — plain
and simple. And if they fail, they’ll look to us and
ask why — particularly if they feel that our products
let them down. So, we try to produce a unified set
of services: great code, great documentation, great
support, and a willingness to learn, accept criticism,
and help our customers achieve their very best work.

DI: I’d like to explore one of your newer products, one that I am
currently in the process of reviewing: Sleuth QA Suite. Many in the
Delphi community have been encouraging you for some time to fill
the gap that used to exist and create a solid Delphi profiler. What
were some of the challenges in developing this tool that might have
contributed to it taking longer than you expected?

DelRossi: It seemed like everyone was asking us to develop a profes-
sional profiling tool for Delphi and C++Builder! For years, the big tool-
makers have focused solely on Microsoft developers. The key tools, like
NuMega BoundsChecker, really ignored the fact that real-world devel-
opment was being done with Borland compilers. Over time, Bounds-
Checker, and some similar products were ported to work with Borland
compilers, but in our opinion, they never quite made the grade.

Like a lot of our products, Sleuth QA Suite was born out of a very
real need we had internally. We needed a bug detection tool and

DelRossi

http://www.turbopower.com

File | New
profiler that was an expert when it came to the VCL. The trouble
is, getting all that VCL knowledge into Sleuth QA Suite took a lot
longer than we expected. Plus, we kept coming up with additional
capabilities that we felt were imperative to Sleuth QA Suite’s success.

In the end, I think we came up with a great product, and to tell the
truth, though it was a lot later than we would have liked, rushing
it out the door wouldn’t have been the answer. Building quality
products sometimes takes a little longer than any of us expect.

DI: I’d like to change the topic a bit and talk about some of the
other folks who work at TurboPower. For example, I’ve known
Julian Bucknall for several years and have been very impressed
with his articles and book chapters. I understand he is currently
in the process of finishing a book on algorithms. Of course, he
is just one of several of your engineers active as Delphi writers.
Talk a bit about some of these active writers and some of the
reasons you not only allow this but encourage such “extra-
curricular” activities.

DelRossi: I’ve been at TurboPower four years now and I’m still awed
by our programmers. I was a programmer too, once upon a time, but
I was never anywhere near the caliber of our engineering staff.

One reason I think we’ve been so fortunate at attracting such
high-end developers is that we give our developers a chance to
participate in every level of the product development cycle, from
design to marketing. Not everyone likes every part of the process,
of course, but there’s much to be learned and at the end of the day,
a greater appreciation for how each phase of the cycle develops.

Another area, as you say, is to encourage our engineering staff to
write and give lectures. Again, not all of our engineers want to do
these things, but for those that enjoy it, this allows for a sharing
and exchange of knowledge; it’s great for them, as well as for the
whole company.

DI: By all reports, the latest version of Delphi seems to be one of
the most solid ones to appear in several years. Does this seem to be
an accurate assessment, and if so, do you feel it might help Delphi’s
market share begin to expand?

DelRossi: We’re very satisfied with this version of Delphi, although
there’s lot more that could be done. Of course, all those gaps give
us plenty to do!

DI: Some component-producing companies also produce versions for
other tools like Visual Basic. Have you ever considered this? What do
you see as the advantages and disadvantages?

DelRossi: We’ve certainly considered expanding our product line to
support Visual Basic, and COM developers generally. Many of our
customers have for one reason or another — perhaps at the request of
a key client — moved away from Delphi to embrace COM, and they
tell us they’d like to use our products too.

Expanding our products to support all kinds of developers is an
important part of my vision for TurboPower. As a matter of fact,
we’ve already begun including COM implementations in some of
our products, including Abbrevia and SysTools 3. In my view,
COM support is important for a number of reasons. Naturally, it
exposes TurboPower products to a wider audience of Visual Basic
and Visual C++ developers, but it also makes some of our technol-
39 July 2000 Delphi Informant Magazine
ogy available for Web development. In fact, the COM object in
SysTools 3 is used extensively on our own Web site.

DI: In previous interviews with developers I have always included a
question on operating systems. Windows is very popular right now
as a computing environment, but Linux is becoming such a strong
competitor that Inprise/Borland has decided to develop tools for
this environment. I noticed that you included an article on this
topic in the February, 2000 issue of your newsletter, Powerlines.
Please share some of your thoughts on the future growth of Linux
and how you see this impacting TurboPower.

DelRossi: We’re incredibly excited about the potential for Linux,
particularly with the advent of Borland’s Kylix project. For some
time now, I’ve regarded the Linux marketplace as the Windows
market was back before Visual Basic. In those days, creating
Windows programs was essentially a labor of love. You had to
learn all those API calls and bring out the old command-line C
compiler. Then Visual Basic arrived and millions of developers
turned to it as an easy way to build Windows applications.
Love it or hate it, Visual Basic changed everything for Windows.
Even programmers who wouldn’t have considered programming
in Basic again started using Visual Basic, because it was so much
easier to build Windows programs with it.

The Linux development world is also waiting for its Visual Basic and,
quite frankly, we think Kylix may be it. As it was back then, there
are probably many C and C++ programmers that think their Pascal
days are behind them. But Kylix may represent such a fundamental
improvement in Linux-targeted programming that Pascal’s glory days
could be coming back. In a big way!

DI: I’d like to conclude by talking a bit about Inprise. We’ve wit-
nessed a lot of changes in recent years — certainly some ups and
downs. Among other remarkable developments, there is now a signifi-
cant merger with Corel Corporation on the horizon. What is your
perspective on some of the new developments at Inprise? How will
this affect the future of Delphi and your company?

DelRossi: Inprise has always had great development talent and terrific
developer products. Of course, my crystal ball is no better than
anyone else’s. But from where I stand, Inprise has a better outlook
now than at any time in its recent history. Naturally, much of that
will depend on the rate of Linux adoption.

DI: Thank you very much, and best of luck with all your future
endeavors. ∆

— Alan C. Moore, Ph.D

Alan Moore is a Professor of Music at Kentucky State University,
specializing in music composition and music theory. He has been
developing education-related applications with the Borland languages
for more than 10 years. He has published a number of articles in
various technical journals. Using Delphi, he specializes in writing
custom components and implementing multimedia capabilities in
applications, particularly sound and music. You can reach Alan on
the Internet at acmdoc@aol.com.

	Table of Contents
	Delphi Tools
	Joseph D.Booth Consulting Releases JBC UI/Scan for Delphi
	Quma Releases QVCS 3.4
	O&A Productions Announces oaAgent 1.0
	Objective Software Technology Announces TRANSFORM 5.0.1
	InstallShield Announces RTPatch for InstallShield Professional
	DeVries Data Systems Announces Release of OfficePartner 1.5
	Lingscape Announces MultLang Suite 3
	EliteSys Announces SuperBot 2.2

	Delphi News
	TurboPower Announces Support for C++Builder 5
	Inprise/Borland ’s Kylix Project Builds Third-party Network for Linux
	Inprise/Borland Opens Public Field Test of InterBase 6.0
	Inprise/Borland Java Development Tools Win Multiple Awards
	Inprise/Borland and Hitachi Strengthen Co-development Relationship

	On the ’Net
	Real-world Web Apps
	Getting Started
	Delphi ’s ISAPI Architecture
	Dynamic Web Pages and Sessions
	The Art of Maintaining State
	The MDWeb Components
	Enough Theory!
	Begin Listing One —TMDSessionMgr Object
	Conclusion
	An Extension of Your Own
	Begin Listing Two —TMDPageProducer Object

	Columns & Rows
	Exploiting SQL Server 7 DMO
	Building a Database Information and Reconciliation Tool (DIRT)
	SQLServer and Database Attributes
	The Tables ,Columns ,and StoredProcedures Collections
	Building a COM/SQL-DMO Role-based Security Object
	Conclusion
	Resources
	Begin Listing One — DIRT

	Greater Delphi
	Palm Conduits
	About the PC ToDo Application
	The ToDo Database
	Synchronization Strategy
	Supporting Cast
	Synchronization in Action
	Final Steps
	Conclusion

	DBNavigator
	Delphi and ASP
	Using ASP Commands
	VBScript Comments and Variables
	Include Files
	Using Objects
	Creating a Custom ASP Example
	Calling the Custom ASP Object
	Calling Your ASP from an HTML Form
	Conclusion

	New &Used
	Wise for Windows Installer 2.0
	Using the Installation Expert
	Using the Setup Editor
	Wizards
	Documentation
	Informant Fact File
	Conclusion

	TextFile
	Delphi 5 Developer ’s Guide

	Best Practices
	Be Resourceful

	File |New
	An Interview with Robert A.DelRossi

